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1. INTRODUCTION  

The Probabilistic Metric Space (or Statistical Metric Space) was defined by Menger [5] in 

1944, as a generalization of metric space. Then Schweizer and Sklar [7] gave some basic 

results in this space. Some mathematicians observed that  condition of contraction in metric 

space may be translated into PM-Space  with minimum norm. Sehgal and Bharucha [8] gave 

a generalization of Banach contraction principle in Menger space.  Some basic definitions 

and theorems in Menger space which are used for proving the main result are as follows. 

Definition 1.1 [7] “Let  be a mapping. Then  is said to be a 

triangular-norm ( briefly, -norm) if for all  

 (i)       

          (ii)       

      (iii)     for  

      (iv)      ” 

Example 1.2 [7] “The four basic -norms are as follows: 

(i)  The minimum -norm: . 

(ii)  The product -norm:  

(iii)  The Lukasiewicz -norm:  

(iv)  The weakest -norm, the drastic product: 
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We have the following ordering in the above stated norms: 

” 

Definition 1.3 [7] “A mapping  :  → is a distribution function if it is left continuous 

and non-decreasing with inf and sup  for all real x.” 

We shall denote the set of all distribution functions by whereas  be the Heaviside 

distribution function defined as  

 

Definition 1.4 [6] “The ordered pair  is called a PM space if   be a  

non-empty set and  be a mapping satisfying: 

 if and only if  

 

=  

 and   then  

               for all x, y, z in   and  t, s  

Every metric space can always be realized as a probabilistic metric space by putting the 

relation x, y in ” 

Definition 1.5 [6] “The ordered triplet  is called a Menger space if is a 

probabilistic metric space, is a -norm and satisfies for all x, y, z  in  and t, s  

” 

Definition 1.6 [6] “A sequence  in a Menger space  is said to be:   

(i)   Cauchy sequence in  if for every  and   , we can find a positive integer 

  satisfying . 

(ii) Convergent at a point x  if for every  and  , there exists a     

 positive integer  satisfying    for all .” 

The space is said to becomplete if  every Cauchy sequence is convergent in  

Definition 1.7 [6] “Let  S and  T be two self-mappings of a Menger  space  Then S 

and T are said to be compatible if  for all  

t where  is a sequence in  satisfying  

 = where u .” 
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Definition 1.8 [10] “Two self-mappings A and S of a non-empty set  are said to be weakly 

compatible (or coincidentally commuting) if they commute at their coincidence points i.e. if 

Az = Sz for some z ∈ , then ASz = SAz.”  

Theorem 1.9 [10] “If two self-mappings A and S of a Menger space  are 

compatible, then they are weakly compatible.” 

Definition 1.10 [2] “Let S and  T be two self-mappings of a Menger  space  Then S 

and T are said to be compatible of type (A) if we can find a sequence  in satisfying 

 = where u  and and 

for all t ”   

Definition 1.11 [2] “Let S and T be two self-mappings of a  Menger  space  Then S 

and T are said to be compatible of type (β) if we can find a sequence    in  satisfying  

 = where  u and for all t ” 

Definition 1.12 [1] “Two self-maps S and T of a set  are occasionally weakly compatible 

maps (shortly owc) if and only if we can find a point x in  satisfying  and  

” 

Theorem 1.13 [3] “Let S and T be compatible maps of type (A) in a Menger space  

and  S , T  → u for some u in  . Then  

       (i)  TS  → Su if S is continuous. 

      (ii)  STu = TSu and Su = Tu if S and T are continuous.” 

Theorem 1.14 [11] “Let   be a Menger space. If there exists a constant 

 k ∈ (0, 1) such that  ≥   for all x, y in   and t > 0, then { } is a 

Cauchy sequence in .” 

Theorem 1.15 [10] “Let  be a Menger space. If there exists a constant 

 k ∈ (0, 1) such that  ≥   for all x, y in   and  t > 0, then x = y.” 

Theorem 1.16 [10] “In a Menger space if (a, a) ≥ a, for all  

a ∈ [0, 1],  then  (a,b) = Min{a, b} for a, b ∈ *0, 1+.” 

Definition 1.17 [15] “Let S and T be two self-mappings on a Menger space 

Then S and T are called reciprocally continuous if 

  and   

whenever  is a sequence in  satisfying = z∈ ” 
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Definition 1.18 [14] “Let S and T be two self-mappings of a Mengerspace 

with continuous -norm . Then S and T are called semi compatible if 

 

whenever  in  satisfies where  u , t .” 

Theorem 1.19 [16] “If self-mappings A and S of a Menger space ( , , ) are semi-

compatible then they are weak compatible.” 

Theorem 1.20 [16] “Let S and T be two self-maps on a Menger space ( , , ) with  (a,a) 

≥ a, for all  a ∈ [0,1] and T is continuous. Then (S,T) is  semi-compatible if and only if (S,T) is 

compatible.” 

Definition 1.21 [15] A Class of Implicit  Relation. “Let 𝚽 be the set of all real continuous 

functions ϕ : →  non-decreasing in the first argument with the property: 

       (a)   for u, v ≥ 0, ≥  0  or ≥ 0  implies that u ≥ v; 

       (b) ≥ 0  implies  u ≥ 1.” 

Branciari proved the following theorem: 

Theorem 1.22 [13] “Let (X, d) be a complete metric space. Suppose f : X → X be a 

 mapping such that for each x, y X and c[0,1), 

 

where φ: → is a Lebesgue-integrable mapping which is a summable (with finite 

integral) on each compact subset of , non-negative and such that for each 

> 0,  Then f  has a unique fixed point  z X  such that  for each   

x X, f nx = z.”  

 Definition 1.23 Implicit Relation in Integral Setting:  Let 𝚽 be the set of all real continuous 

functions ϕ : →  non-decreasing in the first argument with the property: 

(a)     For  u, v ≥ 0, ≥  0  or ≥ 0 implies that  

     u ≥ v. 

     (b) ≥   0  implies u ≥ 1,  

where : → is a Lebesgue integrable mapping which is a summable (with finite 

integral) on each compact subset of , non-negative and such that for each 
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> 0,  

Theorem 1.24 [12] “Let be a Menger space. If there exists a constant 

k ∈ (0, 1) such that  ≥  for all  t > 0 with fixed  

x, y ∈ , where : *0, 1) → *0, 1) is a non-negative summable Lebesgue integrable function 

such that  > 0 for each  ∈ *0, 1), then x = y.”  

 

2.  Main Result 

Theorem 2.1 Let A, B, S, T, I  and J  be self-mappings of a  complete  Menger space    

such that 

         (i)   AB(  ) ⊂ J(  )  and  ST(  ) ⊂ I(  ); 

         (ii)  the pair  (AB , I) is semi-compatible and (ST , J) is weak compatible; 

         (iii)  the pair (AB , I) or  (ST, J)   is reciprocally continuous; 

         (iv)  for some  ϕ ∈ Φ,  there  exists k ∈ (0, 1) such that  for all  x, y ∈   and   

                 t > 0 , 

≥   0,           (2.1) 

≥   0 .           (2.2) 

Then AB, ST, I and  J  have a unique common fixed point . 

 Furthermore, if  the pairs  (A, B), (A,  I), (B,  I), (S, T), (S, J) and (T, J) are commuting mappings 

then A, B, S, T,  I  and J  have a unique  common fixed point. 

Proof. Let ∈ . Since AB( ) ⊂  J( ) and ST( )  ⊂  I( ),  

there exist  , ∈   such that AB = M = and ST = L = .   

Inductively, we can construct sequences { } and { } in   such that  

AB = J = and ST = I =  for n = 0, 1, 2,… 

Now putting x =  ,   y = in   inequality  (2.1) , we obtain 

≥ 0.                        

                                                        (2.3) 

That is, 

≥ 0.    (2.4)       Using (a) 

of Definition 1.21, we get 
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 ≥ .                                            (2.5) 

Analogously, putting  x = ,   y = in (2.2), we have 

 

Using (a) of Definition 1.24, we  get 

 ≥ .(2.6) 

Thus, from (2.5) and  (2.6),  for any  n and t, we have 

 ≥ .          (2.7) 

Hence by Theorem 1.14, { } is a Cauchy sequence in  which is complete. Therefore { } 

converges to p  ∈ . The sequences {AB }, {ST }, {I }  

And {J }, being subsequences of { } also converge to p , that is 

                             { AB - → p , , ST - → p ,                                       (2.8)  

                               { I -  → p , , J -  → p.                                           (2.9) 

The  reciprocal  continuity of the pair (AB, I)  gives  

ABI → ABp  and  IAB → Ip.  

The semi-compatibility of the pair (AB, I)gives   = Ip. 

From the uniqueness of the limit in a Menger metric space, we obtain that  

ABp = Ip                                                               (2.10) 

Step1. By putting x = p,  y =   in (2.1), we obtain 

≥ 0. 

Letting n → ∞ and using  (2.8), (2.9)  and (2.10), we  get 

≥  0 .    

As  ϕ is non-decreasing in first argument, we have 

≥   0 .    

Using  (b) of Definition 1.21, we have ≥ 1 for all t > 0,  

which gives =  1, that is    Ip  = p = ABp.(2.11) 

Step 2. As  AB( ) ⊂ J(  ), there exists u ∈   such that AB p = I p = p = J u. 

Putting x = ,   y = u in (2.1) we obtain that 

≥  0. 
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Letting  n → ∞ and using (2.8) and (2.9), we  get  

≥  0.     

Using  (a) of Definition 1.21 , we have   ≥ 1  for all t > 0 , which gives 

  =  1. Thus  p = STu . Therefore, STu = J u = p . Since (ST, J) is weak 

compatible, we  get 

JSTu = STJu ,  that is  STp = Jp.                                          (2.12) 

Step 3.By putting x = p,   y = p in  (2.1) and using (2.11) and (2.12), we obtain 

≥ 0,     

that is, 

≥ 0.    

As ϕ is non-decreasing in  first argument,  we have 

≥ 0. 

Using  (b) of Definition 1.21, we have   ≥ 1 for  all t > 0, which gives    

  =  1. Thus ABp = STp . 

Therefore p = ABp = STp = Ip = Jp , that is  p is a common fixed point of AB, ST, I and J.  

Uniqueness.  Let q  be another common fixed point of AB, ST,  I  and J.  

Then q = ABq = STq =  Iq = Jq . 

By putting x = p and  y = q in (2.1) , we get 

≥ 0, 

that is  

≥ 0.  

As ϕ is non-decreasing in first argument, we have 

≥ 0. 

Using  (a) of Definition 1.21, we have   ≥ 1 for all t > 0 ,  

which gives =  1 , that is  p = q . 

Therefore, p is the unique common fixed point of the self-maps AB, ST,  I and J. 

Finally,  we  need to show that p is also a common fixed point of  A, B, S, T,  I and J.  For this 

let p be  the  unique  common fixed point of  both the pairs (AB, I)   and (ST, J).  

Then by using  commutativity of  the  pairs  (A, B),  (A, I)  and (B, I), we obtain 
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Ap = A(ABp) = A(BAp) = AB(Ap),  Ap = A(Ip) = I(Ap), 

Bp = B(ABp) = B(A(Bp)) = BA(Bp)  = AB(Bp), Bp = B(Ip) = I(Bp) , 

which shows that Ap and Bp are common fixed point of (AB, I), yielding thereby 

                                 Ap = p = Bp = Ip = ABp                                                 (2.13) 

in the  view of  uniqueness  of  the  common fixed point of  the pair  (AB , I).   

Similarly using the commutativity of  (S, T),  (S, J) and (T, J), it can be shown that 

Sp = Tp = Jp = STp = p .                                                   (2.14) 

Now we need to show that Ap = Sp and Bp = Tp. 

For this put x  = p and   y = p in (2.1)  and using (2.13) and (2.14),we get 

≥ 0,                                  

that is, 

≥ 0 .                                 

As ϕ is non-decreasing in first argument , we have 

≥ 0. 

 Using  (b) of Definition 1.21 , we obtain 

 ≥ 1 for  all t >  0 , which  gives  =  1, that is Ap = Sp . 

Similarly  it  can be  shown  that  Bp = Tp.  

Thus p is  the unique common fixed point of  A, B, S, T, I and J .  

This completes the proof. 
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