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GLOBAL STABILITY ANALYSIS OF TWO MUTUALLY INTERACTING SPECIES PAIR 

WITH MONOD TYPE-VARIABLE COEFFICIENT OF ONE OF THE SPECIES 
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Abstract: In the present investigation, the global stability analysis of a two species ecological 

mutualism monod model is presented by constructing a suitable Liapunov’s function for the 

co-existent equilibrium state.  
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1 INTRODUCTION  

Lotka [6] and Volterra [7] introduced the prey- predator models.  K. Laxminarayan and 

N.Ch.Pattabhiramacharyulu [1, 2, 3] examined the stability of two species Prey-Predator 

models and derived some threshold theorems on the quasi-linear basic balancing equations.  

Local stability analysis for a two-species ecological mutualism model has been presented by 

the present author et al [4, 5]. 

The present investigation is devoted to establish the global stability of the co-existent 

equilibrium state of the above said model by employing a properly constructed Liapunov’s 

function. 

2 LIAPUNOV’S STABILITY ANALYSIS 

A.M. Liapunov introduced an efficient method in 1892 to study the global stability of 

equilibrium points in case of linear and non-linear systems.  The method called Liapunov’s 

method is based on the constructing a scalar function called Liapunov’s function.  This 

method yields stability information directly without solving the differential equations 

involved in the system.  Hence it is also called Liapunov’s direct method to detect the 

criteria for global stability. This tool is being employed efficiently in diverse areas such as 

theory of control systems, dynamical systems, systems with time tag, power system 

analysis, time varying non-linear feedback systems, multi species ecological systems and so 

on. 

The stability behaviour of solutions of linear and weakly non-linear systems is done by using 

the techniques of variation of constants formulae and integral inequalities.  So this analysis 

is confined to a small neighbourhood of operating point i.e. local stability.  Further, the 

techniques used there in require explicit knowledge of solutions of corresponding linear 

systems.  Hence, the stability behaviour of a physical system is curbed by these limitations. 

If the total energy of a physical system has a local minimum at a certain equilibrium point, 

then that point is stable.  This idea was generalized by Liapunov to study stability problems 

in a broader context. 

Consider an autonomous system  

dx

dt
 = F(x, y)                                                                                                                         (1) 

dy

dt
 = G(x, y) 
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Assume that this system has an isolated critical point (0, 0).  Consider a function E(x, y) 

possessing continuous partial derivatives along the path of (1). 

This path is represented by C = [x (t), y (t)] in the parametric form.  E(x, y) can be regarded as 

a function of t along C with rate of change 

dE

dt
 = 

E

x





dx

dt
 +

E

y





dy

dt
 = 

E

x




 F + 

E

y




 G                                                         (2) 

Definitions: 

1. E(x, y) is said to be positive definite if E(x, y) > 0 for all (x, y) not equal to (0, 0) 

2. E(x, y) is said to be positive semi-definite if  E(x, y) > 0 and E(x, y )=0 

3. E(x, y) is said to be negative definite if E(x, y) < 0 

4. E(x, y) is said to be negative semi-definite if E(x, y) < 0 and E(x, y )=0 

A positive definite function E(x, y) with the property that (2) is negative semi–definite is 

called a Liapunov’s function for the system (1).  The following theorem is the Liapunov’s 

basic discovery. 

Theorem: If there exists a Liapunov’s function E(x, y) for the system (1), then the critical 

point (0, 0) is stable.  Furthermore, if this function has additional property that the function 

(2) is negative definite, then the critical point (0, 0) is asymptotically stable. 

A Mathematical Monod model of a two species ecological mutualism is given by the 

differential equation pair employing the following notation: 

N1, N2: The populations of the first species (S1) and the second species (S2), respectively at 

time t.  

i
i

ii

a
K

a
  : Carrying capacities of iS , i = 1, 2 (these parameters characterize the amount of 

resources available for the consumption exclusively for the two species.)  

 Further both the variables N1 and N2 are non-negative and the model parameters a1, a2, a11, 

a22, a21 are assumed to be non-negative constants.  

Equations for the growth rate of the first species (S1) and the second species (S2) can be 

written as follows: 

(i) Equation for the growth rate of the first Species (S1): 

 
   1

1 11 1 1 2

dN
N a K N F N

dt
    

       (3) 

In the equation (3), the function F (N2) is the characteristic of the N1 with respect to N2 with 

the conditions: 
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(i) F (N2) is bounded throughout and  

(ii) F (0) =0 

The characteristic model considered in this chapter is a two parameter model of the monod 

type as given by Kapur [8]. 

             F (N2) =  2

2

N

N



 
                    

Here   0F     is a parameter characteristic of species (S1).  Further ( 0)   is another 

parameter signifying the strength of the one of the other species (S2).  The mutualism is 

strong or weak according as 0   or 0   and the interaction would be neutral when 

0  . 

(ii) Equation for the growth rate of the second species (S2):   

 
 2

2 2 22 22 2 21 1

dN
N K a a N a N

dt
  

       (4) 

The equilibrium states for this system are 

Both washed out state       :   1 0,0E 
        (5) 

2N  Only washed out state:  
 2 20,E K

       (6) 

1N  Washed out state         :  
 3 1,0E K

       (7) 

Coexistent state                 :  

2 22
1 11 22

1 11 21 2 11 222
4

11 22 21 11 22 21

2 2

,

K a
K a a

K a a K a aK
E

a a a a a a
K K





 

 

 
 

  
         (8) 

The local stability analysis of these equilibrium states were investigated in [8].  It is observed 

that 

(a) 1E  is clearly unstable. 

(b) 2E
 is unstable. 

(c) 3E
is unstable.           

(d) 4E
 is stable. 
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4 LIAPUNOV’S FUNCTION FOR GLOBAL STABILITY OF THE COEXISTENT 

STATE E4:         

 We shall construct a Liapunov’s function and describe the global stability of a system 

concerning two mutually interacting species with monod type-variable coefficient of one of 

the species. 

Basically we consider the equations: 

1 2

1 1 11 1

2

dN N
N a a N

dt N





 
   

           (9) 

 2
2 2 22 2 21 1

dN
N a a N a N

dt
 

         (10) 

The linearized basic equations are 

 

1 2

11 1 1 1 2

2 2

1
du N

a N u N u
dt N N



 

 
               (11) 

 
2

21 2 1 22 2 2 
du

a N u a N u
dt

 
         (12) 

The characteristic equation is 

      
 2 2

211 1 22 11 22 21 1 2

2 2

1 0
N

a N a N a a a N N
N N


 

 

   
       

        (13) 

Equation (13) is of the form  2 + p  + q = 0  

where   p = a11 1N  + a22 2N >0        (14) 

 

2
11 22 21 1 2

2 2

1
N

q a a a N N
N N



 

  
    

         

    21 2
11 22 21 1 2

2 2

a N
a a a N N

N N

 

 

 
   

  
>0  21

11 22

2

a
a a

N





 
 

 
     (15)   

Therefore the conditions for Liapunov’s function are satisfied  

Now we define  

E (u1, u2) = ½ (au1
2 + 2b u1 u2 + cu2

2)        (16) 

where 

     a = 
   

2 2

21 2 22 2a N a N q

D

 
       (17) 
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 b = 

2
22 11 21 1 2

2 2

1
N

a a a N N
N N

D



 

  
   

         (18) 

 c = 

 
2

2
2

11 1 1

2 2

1
N

a N N q
N N

D



 

  
    

         (19) 

 D = pq = (a11 1N  + a22 2N ) 21 2
11 22 21 1 2

2 2

a N
a a a N N

N N

 

 

 
  

  
    (20) 

From equations (14) and (15) it is clear that D > 0 and a > 0  

Also 

2

2 2
11 1 12 2

2 22 2 2 21 2 22 2

( ) 1
( ) ( )

( )

N
a N N q

N Na N a N q
D ac b D

D D



 

    
                   
   
  
  

 

                                              -  

2

2
122 2

2 2

1
N

a N N
N N

D



 

  
        
 
 
   

      (21) 

=  
   

2 2
2 2 2 22 2 2

2 2 121 22 11 12 2

2 2

a N a N q a N N q
N N

 

 

 
    
  
 

 - 
   

2 2
2 22

22 1 22 2

2 2

a N N
N N

 

  

  

     
 

2 2 2 22 2

11 21 1 2 11 21 22 1 22

2

2a a N N a a a N N
N








        (22) 

= 
   

2 2
2 2 2 2 2 2 22 2 2 2 2 2 2

1 2 2 2 111 22 21 1 1 21 22 112 2

2 2

( ) ( ) 0a a N N a N N N q a a qN qa N q
N N

 

 
      

 
 (23) 

D
2
 (ac – b

2
) > 0 

Therefore the function E (u1, u2) at (16) is positive definite. 

Further  
 1 2 2

1 2 11 1 1 1 2

1 2 2 2

1
du du NE E

au bu a N u N u
u dt u dt N N



 

   
                

    + 
  2 21 2 21 1 22 2bu cu a N u a N u 

     (25) 

By substituting values of a, b and c from equations (17), (18) and (19) in (25) we get  

              

2 21 2
1 2

1 2

( )
E du E du

u u
u dt u dt

 
   

          (26) 

which is clearly negative definite. 
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So E (u1, u2) is a Liapunov function for the linear system. 

Next we prove that E (u1, u2) is also a Liapunov function for the non-Linear system also. 

If f1 and  f2are two functions in N1 and N2 defined by   

f1 (N1, N2) = 2

1 1 11 1

2

N
N a a N

N





 
  

 
        (27) 

f2 (N1, N2) =  2 2 22 2 21 1N a a N a N          (28) 

we now have  to show that 1 2

1 2

E E
f f

u u

 


 
 is negative definite. 

Putting N1 = 
1N  + u1 and 

2N  = 
2N  + u2 in (9) and (10) we get 

1du

dt  = 
    2 2

1 1 1 11 1 1

2 2

( )
(

( )

N u
N u a a N u

N u





 
         

 
 

1

2 2
1 2 11 1 1 11 1 2 1

22

( ) 1 ( )( )
u

N u a a N u N u N u
NN







 
        

    

 =  
 

2
2 2

1 11 1 1 1 11 1 1 1 1 2 2 2 1 1 2

2 2

( 2 ) 1
u

a N a u a N N u u N N N u N u u u
N N



 

 
                         

       

2

2 21 1 2 1 2 2

11 1 1 2 11 1 1 2 1 22 2 2 2

2 2
2 2 2 2

N N N N u N
a N u u a u u u u u

N NN N N N

    

    

   
           
          
     

   

  f1 (u1, u2) =  
 

1 1 1 2

11 1 1 2 1 22

2
2

( , )
du N N N

a N u u F u u
dt N N

 

 

 
     
  
 

    (29) 

where   

F(u1, u2) = 
   

2 2 21 2

11 1 2 1 2 1 22 2

2 2
2 2

N N
a u u u u u u

N N N N

  

   

 
     
    
 

 

Also 

 
      2

2 2 2 22 2 2 21 1 1

du
N u a a N u a N u

dt
     

  


2

2 1 2 21 2 1 22 2 2 1 2( , ) ( , )
du

f u u a N u a N u G u u
dt

           (30) 

where G (u1, u2) = - a22 u2
2 

From (16) 

1

E

du


 = au1 + bu2           (31) 
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2

E

du


= bu1 + cu2          (32) 

Now 

 
 

1 1 2

1 2 1 2 11 1 1 2 1 22

1 2 2
2

( , )
N N NE E

f f au bu a N u u F u u
du u N N

 

 

  
          

         

   + (b u1 + c u2)[ a21 2N  u1- a22 2N  u2 + G (u1, u2)]     (33) 

  2

1 2 1 2 11 1 1 1 2

1 2 2 2

1
NE E

f f au bu a N u N u
du u N N



 

     
               

 

     1 2 21 2 1 22 2 2bu cu a N u a N u    + [(au1 + bu2) F (u1, u2) + (bu1+cu2) G (u1, u2)] 

            (34) 

From (26) 

1 2

1 2

E E
f f

du u

 
 


- (u1
2 

+ u2
2
) + (au1+bu2) F(u1, u2) + (bu1+cu2) G (u1,u2)   (35) 

By introducing polar co-ordinates u1 = r cos , u2 = r sin  we can write the equation (35) as 

1 2

1 2

E E
f f

du u

 
 


- (r
2
) + r {[a cos  + b sin  ] F(u1, u2) + [b cos  + c sin ] G(u1, u2) (36) 

Let us denote largest of the numbers |a|, |b|, |c| by K. 

Our assumptions imply that | F (u1, u2) | < 
6

r

K
 and | G (u1, u2)| < 

6

r

K
for all sufficiently small  

r > 0. 

So 
2 2

2

1 2

1 2

4
0

6 3

E E Kr r
f f r

du u K

 
     


        (37) 

Thus the function E (u1, u2) is positive definite with the condition that 

 1 2

1 2

E E
f f

du u

 



 is negative definite 

 The equilibrium state E4 is “asymptotically stable”. 
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