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INTRODUCTION: 

In mathematics, Non Linear Programming (NLP) is the process of solving an optimization 

problem defined by a system of equalities and inequalities, collectively termed constraints, 

over a set of unknown real variables, along with an objective function to be maximized or 

minimized, where some of the constraints or the objective functions are nonlinear 
[3]

 

In optimization, the Karush – Kuhn – Tucker (KKT) conditions (also known as Kuhn – 

Tucker – Conditions) are first order necessary conditions for a solution in nonlinear 

programming to be optimal, provided that some regularity conditions are satisfied. Allowing 

inequality constraints, the KKT approach to nonlinear programming generalizes the method 

of Lagrange multipliers, which allows only equality constraints. The system of equations 

corresponding to the KKT conditions is usually not solved directly, except in the few special 

case where a closed – form solution can be derived analytically. In general, many 

optimization algorithms can be interpreted as methods for numerically solving the KKT 

system of equations 
[3], [5]

 

The KKT conditions were originally named after Harold W. Kuhn, and Albert W. Tucker, 

who first published the conditions 
[9]

. Later scholars discovered that that the necessary 
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conditions for this problem had been stated by William Karush in his master’s thesis and 

Kjeldsen (2005) 
[7], [8]

 

Under differentiability and constraint qualifications, the KKT conditions provide necessary 

conditions for a solution to be optimal. Under convexity, these conditions are also sufficient. 

If some of the functions are non – differentiable, sub differential versions of KKT conditions 

are available 
[9]

 

Consider the standard NLP: 

Min:   𝑓(𝑥) 

Subject to 𝑔𝑗  𝑥 ≤ 0, ∀ 𝑗 = 1, 2, … , 𝑝       (P) 

  𝑖 𝑥 = 0, ∀ 𝑖 = 1, 2, … , 𝑚 

Where the functions  𝑓 𝑥 : ℝ𝑛 ⟶ ℝ;  𝑔𝑗  𝑥 : ℝ𝑛 ⟶ ℝ𝑝  𝑎𝑛𝑑 𝑖 𝑥 : ℝ𝑛 ⟶ ℝ𝑚  , they are 

conditionally differentiable 

The feasible set of problem (P) will be denoted by Ω i.e. 

Ω =   𝑥 ∈ ℝ𝑛  𝑔𝑗  𝑥 ≤ 0  𝑎𝑛𝑑 𝑖 𝑥 = 0   

The classical KKT condition at given  𝑥 ∈ Ω, and then there exists Lagrangian multipliers 

𝜆 ∈ ℝ𝑚   𝑎𝑛𝑑 𝜇 ∈ ℝ𝑝  Such that 

∇𝑓 𝑥 +  𝜆𝑖
𝑚
𝑖=1 ∇𝑖 𝑥 +  𝜇𝑗

𝑝
𝑗=1 ∇𝑔𝑗  𝑥 = 0  𝑤𝑒𝑟𝑒   

𝜇𝑗 ≥ 0  

𝜇𝑗 . 𝑔𝑗  𝑥 = 0  

In order to have an optimal solution to the given NLP problem, the KKT necessary condition 

has to be satisfied. The above optimality criteria has been used to formulate algorithms that 

solve (P) in the presence of any constraint qualification. These algorithms use the cones of 

directions of constancy. However, if 𝑥 solves (P), but 𝑥, it is not a Kuhn – Tucker point 

(KKP), i.e. the KKT conditions do not hold at 𝑥, and then the program (P) is “Unstable” i.e. 

the “Perturbation” function, which is the optimal value of (P) as a function of perturbations of 

its right handed side, may decrease infinitely steeply in some direction. Thus, though we may 

solve (P), in practice our solution may be nowhere near the true solution. It is therefore of 

interest to know beforehand whether or not 𝑥, it is a KKP. Now, if a constraint qualification 

holds at 𝑥, and then 𝑥, it is necessarily a KKP for all objective functions which achieves a 

constrained minimum at  𝑥 : Program (P) is therefore “Stable” at  𝑥  for all such objective 

functions 



  International Journal of Advanced Research in  ISSN: 2278-6252 

 Engineering and Applied Sciences  Impact Factor: 6.655 

 

Vol. 5 | No. 6 | June 2016 www.garph.co.uk IJAREAS | 3 
 

If the problem is unconstraint, then the KKT conditions reduces to ∇𝑓 𝑥 = 0, which is a 

necessary optimality condition; however, this will not always be true, see the following 

counter example: 

COUNTER EXAMPLE: 

Consider the problem (P) with  𝑥 : ℝ2 ⟶ ℝ;  𝑔 𝑥 : ℝ2 ⟶ ℝ2 𝑓𝑜𝑟 𝑗 = 1, 2 defined by 

 𝑥 = −𝑥1 , and 

𝑔 𝑥 =  𝑥2 −  1 − 𝑥1 3, −𝑥2 𝑇   

Note that  𝑥∗ =  1, 0 𝑇, it is minimizers of the problem but the KKT condition do not hold 

In this paper we prove the KKT condition supposing the equality between the polar of the 

tangent cone and the polar of the first order feasible variations cone. Although this condition 

is the weakest assumption, it is extremely difficult to be verified. Therefore, other constraint 

qualifications, which are easier to be verified, will be discussed as: Slater’s Linear 

independence of Gradient, Mangasarian – Fromovitz’s and quasi – regularity. In general, we 

call a property of the feasible set a constraint qualification if it guarantees the KKT 

conditions to hold at a local minimizer. 

Several mathematicians obtained different constraint qualifications. In this research, we will 

discuss many of them as well as some relations between them. A special interest is devoted to 

show the weakest such qualification 

Notation: 

Given  𝑥 ∈ Ω, and the set 𝐴 𝑥 , it denotes the set of inequality active constraint indices that is 

𝐴 𝑥 =   𝑗 𝑔𝑗  𝑥 = 0, 1 ≤ 𝑗 ≤ 𝑝          (1) 

1. Some Mathematical Preliminaries: 

We need some preliminary definitions, results and relatively important cones which are quite 

relevant to prove KKT theorem or conditions 

The cones of the direction of constancy are used to derive: New as well as known optimality 

conditions, weakest constraint qualifications; and regularization techniques, for the NLP 

problem. In addition the “Badly behaved set” of constraints, i.e. the set of constraints which 

causes problem in the KKT theory, is isolated and a computational procedure for checking 

whether a feasible point is regular or not is presented. 

Cones: 

Polar Cones: 

Definition – 1: 
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A sub set 𝑆 𝑜𝑓 ℝ𝑛 , it is called a convex set if two points 𝑥, 𝑦 ∈ 𝑋  𝑎𝑛𝑑 𝜆 ∈ [0, 1], such that 

 1 − 𝜆 𝑥 + 𝜆𝑦 ∈ 𝑆  

Definition – 2: 

A subset  𝐶 𝑜𝑓 ℝ𝑛 , it is a cone when 𝑡𝑑 ∈ 𝐶, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ≥ 0 𝑎𝑛𝑑 𝑑 ∈ 𝐶 

Definition – 3: 

Given a set 𝑆 ⊂ ℝ𝑛 , the polar of  𝑺, it is given by 𝑃 𝑆 =   𝑝 ∈ ℝ𝑛  𝑝𝑇𝑥 ≤ 0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ 𝑆  

Note that for any 𝑆 ⊂ ℝ𝑛  𝑡𝑒𝑛 𝑃(𝑆), it is a cone and also 𝑆 ⊂ 𝑃 𝑃 𝑆  . This holds with 

equality if 𝑆, it is a closed, convex cone, as established by Farkas’ Lemma 
[6]

 as shown below 

Farkas’ Lemma – 1: 

Let 𝐶 ⊂ ℝ𝑛 , it is a closed convex cone, and then 𝑃 𝑃 𝐶  = 𝐶 

Proof: 

For any  𝑥 ∈ 𝐶, we have 𝑥𝑇𝑦 ≤ 0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑦 ∈ 𝑃(𝐶) ⟹ 𝑥 ∈ 𝑃 𝑃 𝐶  ⟹ 𝐶 ⊂ 𝑃 𝑃 𝐶   

Conversely, take  𝑧 ∈ 𝑃 𝑃 𝐶   𝑎𝑛𝑑 𝑙𝑒𝑡 𝑧 = 𝑝𝑟𝑜𝑗𝐶
 𝑧 

∈ 𝐶 ⟹  𝑧 − 𝑧  𝑇 𝑥 − 𝑧  ≤

0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ 𝐶, 

𝑇𝑎𝑘𝑖𝑛𝑔 𝑥 = 0  𝑎𝑛𝑑 𝑥 = 2𝑧 , we obtain  𝑧 − 𝑧  𝑇𝑧 = 0 ⟹  𝑧 − 𝑧  𝑇𝑥 ≤ 0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ 𝐶 

⟹  𝑧 − 𝑧  ∈ 𝑃 𝐶   𝑎𝑛𝑑 𝑠𝑖𝑛𝑐𝑒 𝑧 ∈ 𝑃 𝑃 𝐶  , we have  𝑧 − 𝑧  𝑇𝑧 = 0 ⟹  𝑧 − 𝑧  2 = 0 

⟹ 𝑧 = 𝑧   𝑎𝑛𝑑 𝑧 ∈ 𝐶 ⟹ 𝑃 𝑃 𝐶  ⊂ 𝐶 ⟹ 𝐶 = 𝑃 𝑃 𝐶    

Definition – 4: 

Let  𝑆, it is a nonempty set in ℝ𝑛 , and let  𝑥 ∈ Ω. The cone of feasible direction of 𝑆 𝑎𝑡 𝑥 it is 

denoted by 𝑉, and given by 

𝑉 𝑥 =   𝑑 ∈ ℝ𝑛  𝑥 + 𝜆𝑑 ∈ 𝑆, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝜆 ∈   0, 𝛿   𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝛿 > 0   

Each nonzero vector 𝑑 ∈ 𝑉, it is called a feasible direction. 

Definition – 5: 

Given a function 𝑓: ℝ𝑛 ⟶ ℝ, the cone of descent directions at 𝑥 it is denoted by 𝐹, and 

given by 𝐹 𝑥 =   𝑑 ∈ ℝ𝑛  𝑓 𝑥 + 𝜆𝑑 < 𝑓 𝑥 , 𝑓𝑜𝑟 𝑎𝑙𝑙 𝜆 ∈   0, 𝛿   𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝛿 > 0  

Each direction 𝑑 ∈ 𝐹, it is called a descent direction of 𝑓 𝑎𝑡 𝑥 

Lemma – 2: 

Let 𝑓: ℝ𝑛 ⟶ ℝ, it is a differentiable function at a point 𝑥 ∈ ℝ𝑛 , and then 

a. ∇𝑓 𝑥 𝑇𝑑 ≤ 0 , 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑑 ∈  𝐹 𝑥  

b. If 𝑑 ∈ ℝ𝑛  satisfies ∇𝑓 𝑥 𝑇𝑑 < 0 , 𝑎𝑛𝑑 𝑡𝑒𝑛 𝑑 ∈  𝐹 𝑥 , we get the set and denoted by 

𝐹0 𝑥 =   𝑑 ∈ ℝ𝑛  ∇𝑓 𝑥 𝑇𝑑 < 0        (2) 
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Proof of (a): 

Let 𝑑 ∈  𝐹 𝑥  𝑎𝑛𝑑 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝛿 > 0 𝑎𝑛𝑑 𝑓𝑜𝑟 𝑎𝑙𝑙 𝜆 ∈  0, 𝛿 , we have 

𝑓 𝑥 + 𝜆𝑑 <  𝑓 𝑥  𝑖. 𝑒. 𝑓 𝑥 + 𝜆𝑑 −  𝑓 𝑥 < 0 ⟹ ∇𝑓 𝑥 = lim
𝜆⟶0+

𝑓 𝑥+𝜆𝑑 − 𝑓 𝑥 

𝜆
≤ 0  

⟹ ∇𝑓 𝑥 𝑇𝑑 ≤ 0  

Proof of (b) obviously true by the definition of cone of descent directions 

Definition – 6: 

The set of first order feasible variations at a point 𝑥 ∈ Ω, it is the set 

𝐷 𝑥 =   𝑑 ∈ ℝ𝑛  ∇𝑖 𝑥 𝑇𝑑 = 0, ∀ 𝑖 = 1, … , 𝑚 𝑎𝑛𝑑 ∇𝑔𝑗  𝑥 𝑇𝑑 ≤ 0, ∀ 𝑗 ∈ 𝐴 𝑥      (3) 

𝑤𝑒𝑟𝑒 𝐴 𝑥 , it is the active set defined by (1) 

Note that 𝐷 𝑥 , it is a nonempty closed, convex cone; it is often said that this cone is a linear 

approximation of the feasible set 

Again, given 𝑥 ∈ Ω, define the cone 

𝐺 𝑥 =    𝜆𝑖
𝑚
𝑖=1 ∇𝑖 𝑥 +  𝜇𝑗𝑗∈𝐴 𝑥 ∇𝑔𝑗  𝑥  𝜇𝑗 ≥ 0, ∀ 𝑗 ∈ 𝐴 𝑥       (4) 

To further proceed we need some properties of this cone, and we need the classical result, 

named Caratheodory’s Lemma 

Caratheodory’s Lemma – 3: 

Let 𝑢1 , 𝑢2, … , 𝑢𝑟   they are nonzero vectors in  ℝ𝑛  𝑓𝑜𝑟 𝑚 < 𝑟 𝑎𝑛𝑑 𝑥 ∈ ℝ𝑛  such that 

𝑥 =  𝛾𝑖𝑢𝑖
𝑟
𝑖=1  𝑤𝑖𝑡 𝛾𝑖 ≥ 0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 > 𝑚 , and then there exist indices subset  

𝐼 ⊂  1, … , 𝑚  𝑎𝑛𝑑 𝐽 ⊂  𝑚 + 1, … , 𝑟   𝑎𝑛𝑑 𝑠𝑐𝑎𝑙𝑎𝑟𝑠 𝛾𝑖
′  𝑤𝑒𝑟𝑒 𝑖 ∈ 𝐼 ∪ 𝐽  𝑤𝑖𝑡 𝛾𝑖

′ ≥ 0, 𝑓𝑜𝑟 𝑖 ∈

𝐽  

Such that 𝑥 =  𝛾 ′𝑢𝑖𝑖∈𝐼∪𝐽 , and the vectors 𝑢𝑖  𝑓𝑜𝑟 𝑖 ∈ 𝐼 ∪ 𝐽  , they are linearly independent 

Proof: 

Suppose the vectors 𝑢1, 𝑢2 , … , 𝑢𝑟   , they are linearly independent, there is nothing to prove 

Assume that 𝑢1, 𝑢2, … , 𝑢𝑟   , they are linearly dependent, so, there exist scalars 𝛼1, … , 𝛼𝑟  , not 

all 

𝛼𝑖 = 0, such that   𝛼𝑖𝑢𝑖
𝑟
𝑖=1 = 0 ⟹ 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ∈ ℝ 𝑡𝑒𝑛 𝑥 =   𝛾𝑖 − 𝑡𝛼𝑖 𝑢𝑖

𝑟
𝑖=1   

Define  𝑡, as 𝑡 of minimum absolute value that vanish one of the coefficients  𝛾𝑖 − 𝑡𝛼𝑖 . Then 

𝑥 =   𝛾𝑖 − 𝑡𝛼𝑖 𝑢𝑖
𝑟
𝑖=1 , 𝑤𝑖𝑡  𝛾𝑖 − 𝑡𝛼𝑖 ≥ 0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 > 𝑚  

⟹ 𝑥, it is written as a linear combination using of no more  𝑟 − 1vectors.  

We can repeat this process until that all vectors of the linear combination are linearly 

independent 
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Lemma – 4: 

For any  𝑥 ∈ Ω  then G 𝑥 , it is a closed convex cone 

Proof: 

To prove G 𝑥  which is defined in (4), it is convex, consider A 𝑥 =  1, … , q  for 𝑥1, 𝑥2 ∈

G 𝑥  and 𝑡 ∈  0, 1 , and then there exists  𝜆, 𝛼 ∈ ℝ𝑚   𝑎𝑛𝑑 𝜇, 𝛽 ∈ ℝ+
𝑞  𝑠𝑢𝑐 𝑡𝑎𝑡 

𝑥1 =  𝜆𝑖
𝑚
𝑖=1 ∇𝑖 𝑥 +  𝜇𝑗

𝑞
𝑗 =1 ∇𝑔𝑗  𝑥   𝑎𝑛𝑑  𝑥2 =  𝛼𝑖

𝑚
𝑖=1 ∇𝑖 𝑥 +  𝛽𝑗

𝑞
𝑗=1 ∇𝑔𝑗  𝑥   

⟹ 𝑡𝑥1 +  1 − t 𝑥2 =   𝑡𝜆𝑖 +  1 − t 𝛼𝑖 
𝑚
𝑖=1 ∇𝑖 𝑥 +   𝑡𝜇𝑗 +  1 − t 𝛽𝑗  

𝑞
𝑗=1 ∇𝑔𝑗  𝑥   

Since 𝑡𝜆𝑖 +  1 − t 𝛼𝑖 ≥ 0  𝑎𝑛𝑑  𝑡𝜇𝑗 +  1 − t 𝛽𝑗  ≥ 0 ⟹ 𝑡𝑥1 +  1 − t 𝑥2 ≥ 0 

⟹ 𝑥1, 𝑥2 ∈ G 𝑥  , and hence G 𝑥 , it is convex 

To prove that G 𝑥 , it is closed, consider   𝑠𝑘 ⊂ G 𝑥 , satisfying 𝑠𝑘 ⟶ 𝑠∗ ∈ ℝ𝑛  

It has to be proved that 𝑠∗ ∈ G 𝑥 , for suitable matrices B and C, we have 

G 𝑥 =   𝐵𝜆 + 𝐶𝜌 ρ ≥ 0 , by the Caratheodory’s lemma we can assume that 𝐷 =  𝐵𝐶 , it 

has linearly independent columns, so that 𝐷𝑇𝐷, it is a non singular matrix 

Since  𝑠𝑘 ⊂ G 𝑥 , and then there exists 𝛾𝑘 =  
𝜆𝑘

𝜌𝑘  𝑤𝑖𝑡 𝜌𝑘 ≥ 0, such that 

𝑠𝑘 = 𝐷𝛾𝑘             (5) 

Since 𝐷𝑇𝐷, it is a non singular matrix ⟹  𝛾𝑘 =  𝐷𝑇𝐷 −1𝐷𝑇𝑠𝑘 , taking the limit 𝑘 ⟶ ∞, we 

get 

 
𝜆∗

𝜌∗ = 𝛾∗ = lim
𝑘⟶∞

𝛾𝑘 =  𝐷𝑇𝐷 −1𝐷𝑇𝑠∗ 𝑤𝑖𝑡 𝜌∗ ≥ 0  

Again, taking the limit 𝑘 ⟶ ∞, in (5) we get lim
𝑘⟶∞

𝑠𝑘 = 𝑠∗ = 𝐷𝛾∗ ∈ G 𝑥 ,  

And hence G 𝑥 , it is closed 

Lemma – 5: 

For any 𝑥 ∈ Ω, and then D 𝑥 = 𝑃 G 𝑥   

Proof: 

By the lemma – 1 and 4 we need to prove that  D 𝑥 = 𝑃 G 𝑥   𝑤𝑒𝑟𝑒 D 𝑥  and G 𝑥 , they 

are defined in (3) and (4) respectively 

Consider 𝑑 ∈ D 𝑥 , and given 𝑠 ∈ G 𝑥 , and then we have 

𝑑𝑇𝑠 =  𝑑𝑇𝜆𝑖
𝑚
𝑖=1 ∇𝑖 𝑥 +  𝜇𝑗𝑗 ∈𝐴 𝑥 𝑑𝑇∇𝑔𝑗  𝑥        (6) 

By the definition of D 𝑥   and since 𝜇𝑗 ≥ 0 ⟹ 𝑑𝑇𝑠 ≤ 0 ⟹ 𝑑 ∈ 𝑃 G 𝑥   

Conversely, consider 𝑑 ∈ 𝑃 G 𝑥   𝑖. 𝑒. 𝑑𝑇𝑠 ≤ 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑠 ∈ G 𝑥  

In particular, since ±∇𝑖 𝑥  ∈ G 𝑥 , for all i = 1, . . , m, we get 𝑑𝑇∇𝑖 𝑥 = 0 
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Furthermore, since ∇𝑔𝑗  𝑥  ∈ G 𝑥 , for all 𝑗 ∈ 𝐴 𝑥 , we have 𝑑𝑇∇𝑔𝑗  𝑥 ≤ 0 

And hence 𝑑 ∈ D 𝑥  and then D 𝑥 = 𝑃 G 𝑥   

The Tangent Cone: 

Definition – 7: 

A vector 𝑑 ∈ ℝ𝑛 , it is called tangent direction to  Ω ⊂ ℝ𝑛   𝑓𝑟𝑜𝑚  𝑥 ∈ Ω, when either 𝑑 = 0, 

or there exists a sequence of feasible points  𝑥𝑘 ⊂ Ω  𝑠𝑢𝑐 𝑡𝑎𝑡 𝑥𝑘 ⟶ 𝑥, and also 

𝑥𝑘−𝑥

 𝑥𝑘−𝑥 
⟶

𝑑

 𝑑 
  

Clearly, the set T 𝑥  of the tangent directions to Ω 𝑓𝑟𝑜𝑚  𝑥 , it is a cone. This set is said to be 

a tangent cone.  

Example – 1: 

Let  𝑆 =    𝑥, 𝑦 ∈ ℝ2 𝑥2 − y = 0 , find the tangent cone at  0, 0  

Solution: 

Let  𝑥𝑘 , 𝑦𝑘 ⟶  0, 0 , 𝑖. 𝑒. 𝑥𝑘 ⟶ 0  𝑎𝑛𝑑 𝑦𝑘 = 𝑥𝑘
2 

⟹   𝑥𝑘 , 𝑦𝑘 −  0, 0  =  𝑥𝑘
2 +  𝑦𝑘 2 =  𝑥𝑘   𝑥𝑘

2 + 1  

⟹ lim
𝑥𝑘⟶0+

𝑥𝑘

 𝑥𝑘   𝑥𝑘
2+1

= 1  𝑎𝑛𝑑 lim
𝑥𝑘⟶0+

𝑦𝑘

 𝑥𝑘   𝑥𝑘
2+1

= 0   , and also 

lim
𝑥𝑘⟶0−

𝑥𝑘

 𝑥𝑘   𝑥𝑘
2+1

= −1  𝑎𝑛𝑑 lim
𝑥𝑘⟶0−

𝑦𝑘

 𝑥𝑘   𝑥𝑘
2+1

= 0    

⟹ 𝑇 0, 0 =   −1, 0 ,  1, 0    

Lemma – 6: 

For any  𝑥 ∈ Ω, then 𝑇 𝑥 , it is closed where 𝑇 𝑥  it is the tangent direction to Ω 

Proof: 

Consider  𝑑𝑘 ⊂ 𝑇 𝑥   𝑤𝑖𝑡 𝑑𝑘 ⟶ 𝑑 

To prove that  𝑑 ∈ 𝑇 𝑥  

When 𝑑 = 0, we get 𝑑 ∈ 𝑇 𝑥  

Assume that 𝑑 ≠ 0, and supposes that with loss of generality that 𝑑𝑘 ≠ 0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑘 ∈ ℕ 

Fixed 𝑘 ∈ ℕ 𝑎𝑛𝑑 𝑠𝑖𝑛𝑐𝑒 𝑑𝑘 ∈ 𝑇 𝑥 , and then there exists,  

 𝑥𝑘 ,𝑗  
𝑗 ∈ℕ

 ⊂ Ω 𝑡𝑒𝑛𝑥𝑘 ,𝑗
  𝑗   
  𝑥  𝑎𝑛𝑑 𝑞𝑘 ,𝑗 =

𝑥𝑘 ,𝑗−𝑥

 𝑥𝑘 ,𝑗−𝑥 

  𝑗   
  

𝑑𝑘

 𝑑𝑘 
  

⟹There exists 𝑗𝑘 ∈ ℕ such that  𝑥𝑘 − 𝑥 <
1

𝑘
  𝑎𝑛𝑑  𝑞𝑘 −

𝑑𝑘

 𝑑𝑘 
 <

1

𝑘
  𝑤𝑒𝑟𝑒 

𝑥𝑘 = 𝑥𝑘 ,𝑗𝑘   𝑎𝑛𝑑 𝑞𝑘 ,𝑗𝑘 = 𝑞𝑘 , taking the limit 𝑘 ⟶ ∞, we get  𝑥𝑘 ⟶ 𝑥 , and also 
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 𝑞𝑘 −
𝑑

 𝑑 
 ≤  𝑞𝑘 −

𝑑𝑘

 𝑑𝑘 
 +  

𝑑𝑘

 𝑑𝑘 
−

𝑑

 𝑑 
 ⟶ 0  

⟹
𝑥𝑘−𝑥

 𝑥𝑘−𝑥 
= 𝑞𝑘 ⟶

𝑑

 𝑑 
⟹ 𝑑 ∈ 𝑇 𝑥   

⟹ 𝑇 𝑥 , it is closed where 𝑇 𝑥  it is the tangent direction to Ω 

Remark: 

We have presented two different linear approximations of the feasible set at a point  𝑥 

a. The first order feasible variations cone 𝐷 𝑥 , and 

b. The tangent cone 𝑇 𝑥   

Lemma – 7: 

For any  𝑥 ∈ Ω, and  𝑇 𝑥 ⊂ 𝐷 𝑥 , 𝑤𝑒𝑟𝑒 𝑇 𝑥  𝑎𝑛𝑑 𝐷 𝑥 , they are the tangent cone and the 

first order feasible variations cone at a point  𝑥 

Proof: 

Consider  𝑑 ∈ 𝑇 𝑥   𝑎𝑛𝑑 𝑑 ≠ 0 , and then there exists a sequence    𝑥𝑘 ⊂ Ω 𝑤𝑖𝑡 𝑥𝑘 ⟶ 𝑥 

such that  
𝑥𝑘−𝑥

 𝑥𝑘−𝑥 
⟶

𝑑

 𝑑 
, from the smoothness of 𝑔  𝑎𝑛𝑑 , it follows that 

 𝑥𝑘 =  𝑥 + ∇𝑖 𝑥 𝑇 𝑥𝑘 − 𝑥 + 𝑂  𝑥𝑘 − 𝑥    𝑎𝑛𝑑   

𝑔 𝑥𝑘 = 𝑔 𝑥 + ∇𝑔𝑗  𝑥 𝑇 𝑥𝑘 − 𝑥 + 𝑂  𝑥𝑘 − 𝑥     

Since  𝑥𝑘 , 𝑥 ∈ Ω and we have for all 𝑗 ∈ 𝐴 𝑥  

∇𝑖 𝑥 𝑇  
𝑥𝑘−𝑥

 𝑥𝑘−𝑥 
 +

𝑂  𝑥𝑘−𝑥  

 𝑥𝑘−𝑥 
= 0, and ∇𝑔𝑗  𝑥 𝑇  

𝑥𝑘−𝑥

 𝑥𝑘−𝑥 
 +

𝑂  𝑥𝑘−𝑥  

 𝑥𝑘−𝑥 
≤ 0 

Taking the limit 𝑘 ⟶ ∞, we get  ∇𝑖 𝑥 𝑇 𝑑

 𝑑 
= 0 𝑎𝑛𝑑 ∇𝑔𝑗  𝑥 𝑇 𝑑

 𝑑 
≤ 0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑗 ∈ 𝐴 𝑥  

⟹ 𝑑 ∈ 𝐷 𝑥  , and hence we get 𝑇 𝑥 ⊂ 𝐷 𝑥  

Remark: 

The converse of the lemma – 7 need not be true, see the following counter example 

Counter Example: 

Consider the functions  𝑥 : ℝ2 ⟶ ℝ;  𝑔 𝑥 : ℝ2 ⟶ ℝ2 𝑓𝑜𝑟 𝑗 = 1, 2 defined by 

 𝑥 = 𝑥1𝑥2 , and 

𝑔 𝑥 = −𝑥1 − 𝑥2 , and the point  𝑥 =  0, 0 𝑇 

⟹ 𝑇 𝑥 =    𝑑1, 𝑑2 ∈ ℝ2 𝑑1 ≥ 0, 𝑑2 ≥ 0  𝑎𝑛𝑑 𝑑1𝑑2 = 0  , and also 

𝐷 𝑥 =    𝑑1, 𝑑2 ∈ ℝ2 −𝑑1 −  𝑑2 ≤ 0  𝑎𝑛𝑑 𝑇 𝑥 ≠ 𝐷 𝑥   , clearly 𝐷 𝑥 ⊄ 𝑇 𝑥  

Note: 

If 𝑇 𝑥 = 𝐷 𝑥 , it is a constraint qualification known as “Quasi regularity” 
[2], [12]
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2. Optimality Conditions and Constraint Qualifications: 

In this topic we prove the KKT theorem assuming the weakest qualification condition 

and discuss other ones easier to be verified, supposes that the objective function 

increases along tangent direction we have the following lemma: 

Lemma – 9: 

If 𝑥∗ ∈ Ω, it is a local minimizer of the problem (P), and then ∇𝑓 𝑥 𝑇𝑑 ≥ 0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑑 ∈

𝑇 𝑥∗  

Proof: 

This follows directly from the relation 

0 ≤ 𝑓 𝑥𝑘 − 𝑓 𝑥∗ = ∇𝑓 𝑥 𝑇 𝑥𝑘 − 𝑥 + 𝑂  𝑥𝑘 − 𝑥   , it is valid for  𝑥𝑘 ⊂ Ω 

Classical Karush – Kuhn – Tucker Theorem – 10: 

Let 𝑥∗ ∈ Ω, it is a local minimizer of the problem (P) and if  𝑃 𝑇 𝑥∗  = 𝑃 𝐷 𝑥∗  , and then 

there exists 𝜆∗ ∈ ℝ𝑚   𝑎𝑛𝑑 𝜇∗ ∈ ℝ𝑝  such that 

∇𝑓 𝑥∗ +  𝜆𝑖
∗𝑚

𝑖=1 ∇𝑖 𝑥
∗ +  𝜇𝑗

∗𝑝
𝑗=1 ∇𝑔𝑗  𝑥

∗ = 0  

With  𝜇𝑗
∗ ≥ 0  𝑓𝑜𝑟 𝑗 = 1, … , 𝑝  𝑎𝑛𝑑 𝜇𝑗

∗∇𝑔𝑗  𝑥
∗ = 0 𝑓𝑜𝑟 𝑗 = 1, … , 𝑝 

Proof: 

Consider 𝑥∗ ∈ Ω, it is a local minimizer of the problem (P), by the lemma – 9, we have 

∇𝑓 𝑥∗ 𝑇𝑑 ≤ 0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑑 ∈ 𝑇 𝑥∗ , again using the lemma – 5 and given hypothesis, we get 

−∇ 𝑓 𝑥∗ ∈ 𝑃 𝑇 𝑥∗  = 𝑃 𝐷 𝑥∗  = 𝐺 𝑥∗   

Define  𝜆∗ = 𝜆  𝑎𝑛𝑑 𝜇𝑗
∗ =  

𝜇𝑗 , 𝑓𝑜𝑟 𝑗 ∈ 𝐴 𝑥∗ 

0, 𝑂𝑡𝑒𝑟𝑤𝑖𝑠𝑒
  

This means that there exists 𝜆 ∈ ℝ𝑚   𝑎𝑛𝑑 𝜇𝑗 ≥ 0  𝑓𝑜𝑟 𝑗 ∈ 𝐴 𝑥∗  such that 

∇𝑓 𝑥∗ +  𝜆𝑖
𝑚
𝑖=1 ∇𝑖 𝑥

∗ +  𝜇𝑗𝑗 ∈𝐴 𝑥∗ ∇𝑔𝑗  𝑥
∗ = 0  

Hence complete the proof 

Note: 

𝑃 𝑇 𝑥∗   𝑎𝑛𝑑 𝑃 𝐷 𝑥∗    , they are the Polar of the tangent cone and the first order feasible 

variations cone respectively 

Constraint Qualifications: 

The Kuhn – Tucker conditions are only if some regularity conditions are satisfied. These 

conditions are called the constraint qualification which imposes a certain restriction on 

constraint functions of a Nonlinear Programming problem 
[1], [11]

, for the specific purpose of 
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ruling out certain irregularities on the boundary of the feasible set that would available KKT 

conditions should be the optimal solution occurs there. 

Quasi – regularity constraint Qualification: 

We say that the quasi – regularity constraint qualification is satisfied at   𝑥 𝑤𝑒𝑛 𝑇 𝑥 =

𝐷 𝑥  

Where 𝑇 𝑥  𝑎𝑛𝑑 𝐷 𝑥 , they are the tangent cone and the set of first order feasible variations 

cone at  𝑥 

Note: 

These conditions are not equivalent 
[4]

, for example 

Consider the functions  𝑥 : ℝ2 ⟶ ℝ;  𝑔 𝑥 : ℝ2 ⟶ ℝ 𝑓𝑜𝑟 𝑗 = 1, 2 defined by 

 𝑥 = 𝑥1𝑥2 , and 

𝑔 𝑥 = −𝑥1 − 𝑥2 , and the feasible point  𝑥 =  0, 0 𝑇  

It is easy to see that 

𝑇 𝑥 =    𝑑1, 𝑑2 ∈ ℝ2 𝑑1 ≥ 0, 𝑑2 ≥ 0  𝑎𝑛𝑑 𝑑1𝑑2 = 0  , and also 

𝐷 𝑥 =    𝑑1, 𝑑2 ∈ ℝ2 𝑑1 ≥ 0, 𝑑2 ≥ 0  ,  

And also  𝑃 𝐷 𝑥  = 𝑃 𝑇 𝑥  =    𝑑1, 𝑑2 ∈ ℝ2 𝑑1 ≤ 0, 𝑑2 ≤ 0  

Slater Constraint Qualification: 

Regarding the problem (P), we say that the Slater constraint qualification holds if , it is 

linear and  𝑔, it is convex and then there exists 𝑥 ∈ Ω, such that  𝑥  = 0  𝑎𝑛𝑑 𝑔 𝑥  < 0 

The Slater constraint is, in fact, a constraint qualification 
[5]

 

Theorem – 11: 

If the Slater conditions hold and then 𝑇 𝑥  = 𝐷 𝑥  , 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ Ω 

Proof: 

Using lemma – 7, it is enough to prove that 𝐷 𝑥  ⊂ 𝑇 𝑥   

Consider an arbitrary direction 𝑑 ∈ 𝐷 𝑥  𝑎𝑛𝑑  𝑥 ∈ Ω  it is given by Slater condition 

Define: 𝑑 = 𝑥 − 𝑥 by the convexity of 𝑔𝑗 , we have 

0 > 𝑔𝑗  𝑥  ≥ 𝑔𝑗  𝑥 + ∇𝑔𝑗  𝑥 𝑇𝑑 ⟹ 𝐹𝑜𝑟 𝑗 ∈ 𝐴 𝑥 , we have ∇𝑔𝑗  𝑥 𝑇𝑑 < 0, given 𝜆 ∈   0, 1   

Define: 𝑑 =  1 − 𝜆 𝑑 + 𝜆𝑑 

To prove that  𝑑 ∈ 𝑇 𝑥  , 𝑓𝑜𝑟 𝑎𝑙𝑙 𝜆 ∈   0, 1   

For 𝑗 ∈ 𝐴 𝑥 , we have∇𝑔𝑗  𝑥 𝑇𝑑 < 0 𝑎𝑛𝑑 ∇𝑔𝑗  𝑥 𝑇𝑑 < 0, consequently we have 

∇𝑔𝑗  𝑥 𝑇𝑑 < 0 ⟹There exists 𝑥 = 𝑥 + 𝑡𝑑   𝑤𝑖𝑡 𝑡 > 0 such that  𝑔𝑗  𝑥  < 𝑔𝑗  𝑥  
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Taking a sequence  𝑡𝑘   𝑎𝑛𝑑  𝑡𝑘 ⟶ 0 

Define: 𝑥𝑘 =  1 − 𝑡𝑘 𝑥 + 𝑡𝑘𝑥 = 𝑥 + 𝑡𝑘𝑡𝑑  

⟹
𝑥𝑘−𝑥

 𝑥𝑘−𝑥 
=

𝑡𝑘𝑡𝑑 

 𝑥𝑘−𝑥 
=

𝑑 

 𝑑  
  𝑓𝑜𝑟 𝑡 ∉ 𝐴 𝑥   𝑎𝑛𝑑 𝑔𝑗  𝑥 < 0 (𝑏𝑒𝑐𝑎𝑢𝑠𝑒 𝑖𝑡 𝑖𝑠 𝑠𝑙𝑎𝑡𝑒𝑟)  

By the continuity of 𝑔, we have 𝑔 𝑥𝑘 < 0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑘, it is sufficiently large. 

To conclude that  𝑑 ∈ 𝑇 𝑥  , it is enough to show that  𝑥𝑘 = 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑘, it is sufficiently 

large 

Since 𝑑 ∈ 𝐷 𝑥 , 𝑎𝑛𝑑 𝑀𝑑 = ∇ 𝑥 𝑇𝑑 = 0 

Furthermore, 𝑀𝑑 = 𝑀 𝑥 − 𝑥 = 0 consequently 𝑀𝑑 = 0 

⟹  𝑥𝑘 = 𝑀𝑥𝑘 − 𝑐 = 𝑀𝑥 − 𝑐 + 𝑡𝑘𝑡𝑀𝑑 = 0, 𝑠𝑖𝑛𝑐𝑒 𝑥 ∈ Ω ⟹ 𝑑 ∈ 𝑇 𝑥 ⟹ 𝑑 ∈ 𝑇 𝑥 , 

since 𝑇 𝑥 , it is closed and hence completes the proof 

Linear Independence Constraint Qualification – LICQ: 

This is the most known constraint qualification and states that the equality constraints 

gradients 

∇𝑖 𝑥  𝑓𝑜𝑟 𝑖 = 1, … , 𝑚, and the active inequality constraint gradients  ∇𝑔𝑗  𝑥 , 𝑓𝑜𝑟 𝑗 ∈ 𝐴 𝑥 , 

they are linearly independent. Although easy to check, this condition is a very strong 

assumption 

For example, consider 

Min  𝑓 𝑥 =  𝑥1 − 3 2 +  𝑥2 − 2 2 

Subject to 𝑔1 𝑥 = 2𝑥1 + 𝑥2 − 6 ≤ 0 

  𝑔2 𝑥 = 𝑥1 + 2𝑥2 − 6 ≤ 0 

In this problem we have ∇𝑓 𝑥 =  2 𝑥1 − 3 , 2 𝑥2 − 2  ;  ∇𝑔1 𝑥 =  2, 1  , ∇𝑔1 𝑥 =  1, 2  

⟹The gradients of 𝑔, they are linearly independent so all points are regular. 

We consider the following cases: 

Case – I: 

For 𝐴 𝑥 = ∅ 

From KKT conditions we get both 𝜆1 = 0 𝑎𝑛𝑑 𝜆2 = 0 𝑡𝑒𝑛  

∇𝑓 𝑥 =  2 𝑥1 − 3 , 2 𝑥2 − 2  = 0 ⟹ 𝑥1 = 3  𝑎𝑛𝑑 𝑥2 = 2  

But 2𝑥1 + 𝑥2 − 6 = 2 ≰ 0, 𝑖. 𝑒. 𝑥, it is not feasible it cannot be a local minimum 

Case – II: 

For  𝐴 𝑥 =  1  

From KKT conditions we get 𝜆2 = 0 𝑡𝑒𝑛 
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 ∇𝑓 𝑥 + 𝜆1∇𝑔1 𝑥 =  2 𝑥1 − 3 , 2 𝑥2 − 2  + 𝜆1 2, 1 = 0  

⟹ 𝑥1 = 3 − 𝜆1 𝑎𝑛𝑑 𝑥2 = 2 −
𝜆1

2
 , and the assumption 

𝑔1 𝑥 = 0, it gives with theses 𝑥1  𝑎𝑛𝑑 𝑥2, as follows 

2 3 − 𝜆1 +  2 −
𝜆1

2
 − 6 = 0 ⟹ 𝜆1 =

4

5
  

⟹ 𝜆1  𝑎𝑛𝑑 𝜆2 Satisfies KKT condition and then we get 

𝑥1 = 3 −
4

5
=

11

5
 𝑎𝑛𝑑 𝑥2 = 2 −

1

2
 

4

5
 =

8

5
  

Finally  𝑔2 𝑥 =
11

5
+ 2  

8

5
 − 6 = −

3

5
≤ 0, and hence KKT conditions are satisfied 

Case – III: 

For 𝐴 𝑥 =  2  

From KKT conditions we get 𝜆2 = 0 𝑡𝑒𝑛 

∇𝑓 𝑥 + 𝜆2∇𝑔2 𝑥 =  2 𝑥1 − 3 , 2 𝑥2 − 2  + 𝜆2 1, 2 = 0  

⟹ 𝑥1 = 3 −
𝜆2

2
 𝑎𝑛𝑑 𝑥2 = 2 − 𝜆2 , and the assumptions 

𝑔2 𝑥 = 0, it gives with theses 𝑥1 𝑎𝑛𝑑 𝑥2, as follows 

 3 −
𝜆2

2
 + 2 2 − 𝜆2 − 6 = 0 ⟹ 𝜆2 =

2

5
  

⟹ 𝜆1  𝑎𝑛𝑑 𝜆2 Satisfies KKT condition and then we get 

𝑥1 = 3 −
1

5
=

14

5
 𝑎𝑛𝑑 𝑥2 = 2 −  

2

5
 =

8

5
  

But 𝑔1 𝑥 = 2  
14

5
 +

8

5
− 6 =

1

5
> 0, this is violated the condition of 𝑔1 𝑥 ≤ 0 

Case – IV: 

For 𝐴 𝑥 =  1, 2  

Finally  𝑔1 𝑥 = 2𝑥1 + 𝑥2 − 6  𝑎𝑛𝑑 𝑔2 𝑥 = 𝑥1 + 2𝑥2 − 6 , gives that 𝑥1 = 2 = 𝑥2 

But KKT condition  ∇𝑓 𝑥 + 𝜆1∇𝑔1 𝑥 + 𝜆2∇𝑔2 𝑥 = 0 

⟹  2 𝑥1 − 3 , 2 𝑥2 − 2  + 𝜆1 2 ,1 + 𝜆2 1, 2 = 0  , gives with theses  𝑥1 𝑎𝑛𝑑 𝑥2 , as 

follows 

−2 + 2𝜆1 + 𝜆2 = 0  𝑎𝑛𝑑 𝜆1 + 2𝜆2 = 0 ⟹ 𝜆1 =
4

3
  𝑎𝑛𝑑 𝜆2 = −

2

3
, and since 𝜆1 >

0 𝑎𝑛𝑑 𝜆2 < 0 

It does not satisfies KKT condition 

Note: 

Many problems satisfy KKT conditions without LICQ, for example with  𝑥∗ = 0 
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Consider  

Min  𝑓 𝑥 = 𝑥2 

Subject to 𝑔1 𝑥 = 𝑥1
2 + 𝑥2 ≤ 0 

  𝑔2 𝑥 = −𝑥2 ≤ 0 

Clearly it satisfies KKT conditions without LICQ 

Mangasarian – Fromovitz’s Constraint Qualification – MFCQ: 

Another well known condition which ensures KKT is due to Mangasarian – Fromovitz’s. We 

say that MFCQ holds at 𝑥, when the equality constraint gradients are linearly independent 

and there exists a vector  𝑑 ∈ ℝ𝑛  such that 

∇𝑖 𝑥 𝑇𝑑 = 0 𝑓𝑜𝑟 𝑖 = 1, … 𝑛  𝑎𝑛𝑑 ∇𝑔𝑗  𝑥 𝑇𝑑 ≤ 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑗 ∈ 𝐴 𝑥   

The best known necessary optimality criterion for a mathematical programming problem is 

the KKT optimality conditions 
[4], [10]

; however, the above MFCQ condition is in a sense more 

general. In order for the KKT conditions to hold, one must impose a constraint qualification 

on the constraints of the problem. On the other hand, no such qualification need be imposed 

on the constraints in order that the MFCQ to hold. Moreover, the MFCQ itself can be used to 

drive a form of the constraint qualification for KKT conditions 

Relation among Constraint Qualification: 

Relation between LICQ and MFCQ: 

Theorem – 12: 

If  𝑥 ∈ Ω satisfies LICQ and then it satisfies MFCQ 

Proof: 

Supposes that without loss of generality that 𝐴 𝑥 =  1, … , 𝑞 , and consider the matrix 

𝑀 =  ∇1 𝑥 ⋯ ∇𝑚 𝑥 ∇𝑔1 𝑥 ⋯ ∇𝑔𝑞 𝑥  𝑇   𝑎𝑛𝑑 𝑏 ∈ ℝ𝑚+𝑞  𝑔𝑖𝑣𝑒𝑛 𝑏𝑦   

For all  𝑏𝑖 = 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 = 1, … , 𝑚  𝑎𝑛𝑑 𝑏𝑗 = −1 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑗 ∈  𝑚 + 1, … , 𝑚 + 𝑞  

Since the rows of 𝑀 , they are linearly independent, the system 𝑀𝑑 = 𝑏 it has a solution 

Let  𝑑, it is a solution and then we have 

∇ 𝑥 𝑇𝑑 = 0  𝑎𝑛𝑑 ∇𝑔𝑗  𝑥 𝑇𝑑 = −1 < 0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑗 ∈ 𝐴 𝑥   

Hence, if  𝑥 ∈ Ω satisfies LICQ and then it satisfies MFCQ 

Note: 

The converse of theorem – 12 is need not be true, as shown a counter example below 

Counter Example: 

Consider the function 𝑔𝑗  𝑥 : ℝ2 ⟶ ℝ  𝑓𝑜𝑟 𝑗 = 1, 2, 3, defined by 
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𝑔1 𝑥 =  𝑥1 − 1 2 +  𝑥2 − 1 2 − 2  

𝑔2 𝑥 =  𝑥1 − 1 2 +  𝑥2 + 1 2 − 2  

𝑔3 𝑥 = −𝑥1, with the feasible point 𝑥 =  0, 0 𝑇  

Note that  𝑔𝑗  𝑥 : ℝ2 ⟶ ℝ  𝑓𝑜𝑟 𝑗 = 1, 2, 3, it is linearly dependent  

On the other hand, taking 𝑑 =  1, 0 𝑇, we have  ∇𝑔𝑗  𝑥 𝑇𝑑 < 0 𝑓𝑜𝑟 𝑗 = 1, 2, 3 

It means that MFCQ holds but LICQ does not hold 

Relation between MFCQ and Quasi – Regularity: 

Lemma – 13: 

Let  𝛾:  −𝜀, 𝜀 ⟶ ℝ𝑛 , it is a differentiable curve such that  𝛾 𝑡  = 0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ∈  −𝜀, 𝜀  

If 𝛾 0 = 𝑥, 𝑎𝑛𝑑 𝛾 ′ 0 = 𝑑 ≠ 0, and then there exists a sequence  𝑥𝑘  𝑤𝑖𝑡  

 𝑥𝑘 = 0 𝑎𝑛𝑑 𝑥𝑘 ⟶ 𝑥, and also 

𝑥𝑘−𝑥

 𝑥𝑘−𝑥 
⟶

𝑑

 𝑑 
  

Proof: 

We have   lim
𝑡⟶0

𝛾 𝑡 −𝑥

𝑡
= lim

𝑡⟶0

𝛾 𝑡 −𝛾 0 

𝑡
= 𝛾 ′ 0 = 𝑑 ≠ 0 ⟹ 𝛾 𝑡 ≠ 𝑥  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ≠ 0 

sufficiently small, and taking a sequence   𝑡𝑘  𝑎𝑛𝑑 𝑡𝑘 ⟶ 0 

Define: 𝑥𝑘 = 𝛾 𝑡𝑘  thus 
𝑥𝑘−𝑥

 𝑥𝑘−𝑥 
=

𝑥𝑘−𝑥

𝑡𝑘
.

𝑡𝑘

 𝑥𝑘−𝑥 
⟶

𝑑

 𝑑 
 

Theorem – 14: 

If  𝑥 ∈ Ω satisfies MFCQ and then 𝑇 𝑥 = 𝐷 𝑥  

Proof: 

Consider an arbitrary diction 𝑑 ∈ 𝐷 𝑥   𝑎𝑛𝑑 𝑑, it is given by MFCQ and 𝜆 ∈   0, 1   

Define: 𝑑 =  1 − 𝜆 𝑑 + 𝜆𝑑 

To prove that 𝑑 ∈ 𝑇 𝑥 , 𝑓𝑜𝑟 𝑎𝑙𝑙 𝜆 ∈   0, 1   

Denote  𝑀 = ∇ 𝑥 𝑇 , By MFCQ we have 𝑟𝑎𝑛𝑘  𝑀 = 𝑚 

Consider the matrix  𝑍 =  𝑣1 ⋯ 𝑣𝑛−𝑚  ∈ ℝ𝑛× 𝑛−𝑚 , whose columns are bases of 𝒩 𝑀  

Since   ∇1 𝑥 , … , ∇𝑚  𝑥   , it is a basis of  𝐼𝑚 𝑀𝑇 , and the matrix   
𝑀
𝑍𝑇 , it is non singular 

Define: 𝜑: ℝ 𝑛+1 ⟶ ℝ𝑛   𝑏𝑦 𝜑  
𝑥
𝑡
 =  

(𝑥)

𝑍𝑇 𝑥 − 𝑥 − 𝑡𝑑  
  

Since   ∇𝑥𝜑𝑇 =  
𝑀
𝑍𝑇 , it is non singular, by the implicit function theorem, there exists a 

differentiable curve 𝛾:  −𝜀, 𝜀 ⟶ ℝ𝑛  𝑠𝑢𝑐 𝑡𝑎𝑡 𝜑  
𝛾(𝑡)

𝑡
 = 0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ∈  −𝜀, 𝜀  
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⟹  𝛾 𝑡  = 0  𝑎𝑛𝑑 𝑍𝑇 𝛾 𝑡 − 𝑥 − 𝑡𝑑  = 0       (7) 

Since 𝜑  𝑥
0
 = 0, by the unicity of 𝛾, and then we have 𝛾 0 = 𝑥 

Taking the derivative at 𝑡 = 0, in the equation (7), we get 

𝑀𝛾 ′ 0 = 0            (8) 

Using (7), for 𝑡 ≠ 0, we get 

𝑍𝑇  
𝛾 𝑡 −𝑥

𝑡
− 𝑑  = 0           (8) 

Taking the limit as  𝑡 ⟶ 0, we get 

lim
𝑡⟶0

𝑍𝑇  
𝛾 𝑡 −𝑥

𝑡
− 𝑑  = 0 ⟹ 𝑍𝑇𝛾 ′ 0 = 𝑍𝑇𝑑        (9) 

As 𝑑, 𝑑 ∈ 𝐷 𝑥   𝑎𝑛𝑑 𝑡𝑒𝑛 𝑀𝑑 = 0, using (8) and (9), we get 

 
𝑀
𝑍𝑇 𝛾 ′ 0 =  

𝑀
𝑍𝑇 𝑑 ⟹ 𝑑 = 𝛾 ′ 0   

By lemma – 13, there exists a sequence  𝑥𝑘  𝑤𝑖𝑡  𝑥𝑘 = 0  𝑎𝑛𝑑 𝑥𝑘 ⟶ 𝑥, and also 

𝑥𝑘−𝑥

 𝑥𝑘−𝑥 
⟶

𝑑 

 𝑑  
  

To conclude that  𝑑 ∈ 𝑇 𝑥 , it is enough to show that 𝑔 𝑥𝑘 ≤ 0  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑘 it is sufficiently 

large 

For 𝑗 ∉ 𝐴 𝑥 , we have 𝑔 𝑥 < 0, by the continuity of 𝑔, we have 

𝑔 𝑥𝑘 ≤ 0  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑘, it is sufficiently large 

For 𝑗 ∈ 𝐴 𝑥 , we have  ∇𝑔𝑗  𝑥 𝑇𝑑 ≤ 0  𝑎𝑛𝑑  ∇𝑔𝑗  𝑥 𝑇𝑑 < 0 

Consequently  ∇𝑔𝑗  𝑥 𝑇𝑑 < 0 

From the smooth of  𝑔𝑗 , it follows that 

𝑔𝑗  𝑥
𝑘 = 𝑔𝑗  𝑥 + ∇𝑔𝑗  𝑥 𝑇 𝑥𝑘 − 𝑥 + 𝑂  𝑥𝑘 − 𝑥    

⟹
𝑔𝑗  𝑥

𝑘 

 𝑥𝑘−𝑥 
= ∇𝑔𝑗  𝑥 𝑇  

𝑥𝑘−𝑥

 𝑥𝑘−𝑥 
 +

𝑂  𝑥𝑘−𝑥  

 𝑥𝑘−𝑥 
⟶ ∇𝑔𝑗  𝑥 𝑇 𝑑 

 𝑑  
< 0  

⟹ 𝑔𝑗  𝑥
𝑘 < 0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑘, it is sufficiently large 

⟹ 𝑑 ∈ 𝑇 𝑥 ⟹ 𝑑 ∈ 𝑇 𝑥 , since 𝑇 𝑥 , it is a closed set 

⟹If  𝑥 ∈ Ω satisfies MFCQ and then 𝑇 𝑥 = 𝐷 𝑥 , and hence completes the proof 

Note: 

The Quasi – Regularity it does not MFCQ and also not LICQ, see the following counter 

example 
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Counter Example: 

Consider the functions𝑔𝑗  𝑥 : ℝ2 ⟶ ℝ  𝑓𝑜𝑟 𝑗 = 1, 2 defined by 

𝑔1 𝑥 = −𝑥1
2 + 𝑥2  

𝑔2 𝑥 = −𝑥1
2 − 𝑥2, with the feasible point 𝑥 =  0, 0 𝑇 

In this case 𝐷 𝑥 =    𝑑1, 0  𝑑1 ∈ ℝ , for obtaining 𝑇 𝑥 , consider the sequence 

 𝑥𝑘 =  𝑡𝑘 , 0  𝑤𝑖𝑡 𝑡𝑘 ⟶ 0 𝑎𝑛𝑑 𝑡𝑘 > 0 ⟹ 𝑥𝑘 ⟶ 𝑥  𝑎𝑛𝑑 𝑎𝑙𝑠𝑜 
𝑥𝑘−𝑥

 𝑥𝑘−𝑥 
=

 𝑡𝑘 ,0 

𝑡𝑘
=  1, 0   

⟹ 𝑑 =  1, 0 , it is a tangent direction 

In the same way for  𝑡𝑘 < 0, we get 𝑑 =  −1, 0 , it is also a tangent direction 

Since 𝑇 𝑥 it is a cone, we have   𝑑1, 0 ∈ 𝑇 𝑥  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑑1 ∈ ℝ  

⟹ 𝐷 𝑥 ⊂ 𝑇 𝑥 , by the lemma – 7 we conclude that 𝐷 𝑥 = 𝑇 𝑥  

Note that there is no  𝑑 ∈ ℝ2such that  ∇𝑔𝑗  𝑥 𝑇𝑑 < 0 𝑓𝑜𝑟 𝑗 = 1, 2  

Furthermore  ∇𝑔1 𝑥 , ∇𝑔2 𝑥  , it is linearly dependent 

⟹ 𝑥, it does not satisfy either MFCQ or LICQ, and hence completes the result 

Applications for Optimization of NLP: 

A typical non convex problem is that of optimizing transportation costs by selection from a 

set of transportation methods, one or more of which exhibit economics of scale, with various 

connectivities and capacity constraints. An example would be petroleum product transport 

given a selection or combination of pipeline, rail tanker, road tanker, river barge or coastal 

tank ship. Owing to economic batch size the cost functions may have discontinuities in 

addition to smooth changes. 

Modern engineering practice involves much numerical optimization. Except in certain narrow 

but important cases such as passive electronic circuits, engineering problems are non – linear 

and they are usually very complicated. 

In experimental science, some simple data analysis (Such as fitting a spectrum with a sum of 

peaks of know location and shape but unknown magnitude) can be done with linear methods, 

but in general these problems, also, are non – linear. Typically, one has a theoretical model of 

the system under study with variable parameters in it and a model the experiment or 

experiments which may also have unknown parameters. One tries to find a best fit 

numerically. In this case one often wants a measure of the precision of the result, as well as 

the best fit itself. Often in mathematical economics the KKT approach is used in theoretical 

models in order to obtain qualitative results. 

 



  International Journal of Advanced Research in  ISSN: 2278-6252 

 Engineering and Applied Sciences  Impact Factor: 6.655 

 

Vol. 5 | No. 6 | June 2016 www.garph.co.uk IJAREAS | 17 
 

For example in Marginal Cost – Marginal Revenue: 

Selective Example: 

Consider a firm that maximizes its sales revenue subject to a minimum profit constraint. 

Letting𝑄, it is the quantity of output product (To be chosen);  𝑅 𝑄  it is sales revenue with a 

positive first derivative and with a zero value at zero output. 𝐶 𝑄 , it is production costs with 

a positive first derivative and with a nonnegative value at zero output and  𝐺𝑚𝑖𝑛 , it is the 

positive minimal acceptable level of profit, then the problem is a meaningful one if the 

revenue function levels off so it eventually is less steep than the cost function. The problem 

expressed in the previously given minimization form is 

Minimize  𝑅 𝑄  

Subject to  𝐺𝑚𝑖𝑛 ≤ 𝑅 𝑄 − 𝐶 𝑄 , and 

  𝑄 ≥ 0 

And the KKT conditions are: 

  
𝑑𝑅

𝑑𝑄
  1 + 𝜇 − 𝜇  

𝑑𝐶

𝑑𝑄
 = 0 

 𝑄 ≥ 0 

 𝑄   
𝑑𝑅

𝑑𝑄
  1 + 𝜇 − 𝜇  

𝑑𝐶

𝑑𝑄
  = 0 

 𝜇 ≥ 0 

 𝜇 𝑅 𝑄 − 𝐶 𝑄 − 𝐺𝑚𝑖𝑛 = 0 

Since 𝑄 = 0, it would violate the minimum profit constraint, we have 𝑄 > 0, and hence the 

third condition implies that the first condition holds with equality. Solving that equality gives 

𝑑𝑅

𝑑𝑄
=

𝜇

1+𝜇
 

𝑑𝐶

𝑑𝑄
   

Because, it was given that  
𝑑𝑅

𝑑𝑄
  𝑎𝑛𝑑 

𝑑𝐶

𝑑𝑄
, they are strictly positive, this inequality along with 

the Non negativity condition on  𝜇  guarantees that  𝜇  it is positive and so the revenue – 

maximizing firm operates at a level of output at with marginal revenue  
𝑑𝑅

𝑑𝑄
, it is less than 

marginal cost 
𝑑𝐶

𝑑𝑄
, a result that is of interest because it contrasts with the behavior of a profit 

maximizing firm, which operates at a level at which they are equal 

CONCLUSION: 

In this paper we observe that, KKT optimality condition for NLP has been proved assuming 

the equality of the polar of the tangent cone and the polar of the first order feasible variations 

cone. Despite the difficulty of this property, it needs to have more readily verifiable 
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conditions for the admittance of Lagrange Multipliers. Such conditions called constraint 

qualifications have been investigated extensively. Some of them were discussed as: Slater, 

Linear Independence Gradients (LICQ), Mangasarian – Fromovitz’s (MFCQ), and Quasi – 

Regularity condition through which their relations are analyzed and can be summarized as 

LICQ implies MFCQ but the converse is not necessarily true. MFCQ implies Quasi – 

Regularity but the converse do not hold and that Slater condition satisfies Quasi – Regularity. 

There are other constraint qualification is not discussed in this paper; such as Quasi – 

Normality condition which implies quasi – Regularity, the constant positive linear 

dependence (CPLD) which is weaker than MFCQ and implies quasi – Normality and 

constant rank constraint qualification (CRCQ) which shows the constraint positive linear 

dependence (CPLD) these are all our future aim to complete. 
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