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SOME ASPECTS OF THE ELECTRONIC DENSITY OF STATES OF 

AMORPHOUS SEMICONDUCTORS 

R. Khatri* 

Recent progress in the analysis of the properties of a simple tight binding Hamiltonian, 

appropriate to the study of the role of topological disorder in determining properties of 

amorphous semiconductors, is reviewed. The band structure generated by such a Hamil-

tonian for the diamond cubic structure is compared with a more realistic calculation for Ge.  

The generalisation that the electronic properties of solids depend chiefly on the nature and 

degree of the short range order and are little affected by the loss of long range order has in 

recent years achieved a proverbial status without being at all well understood in theoretical 

terms. It has of course for long been an important component of the chemist's rather 

empirical point of view. On the other hand, solid state theorists, accustomed to dealing with 

systems with essentially perfect long range order, have been somewhat dismayed to be 

reminded that this does not seem to play a very important role in most physical properties, 

however important it may be in facilitating their mathematics. In particular, this point has 

been driven home by the observation of band gaps in amorphous semiconductors 1), equal 

to or even greater than those of corresponding crystals, despite the fact that "the 

conventional methods of band theory have not yet succeeded in calculating a density of 

states with a band gap" 2) for such systems. The conventional methods of band theory are 

founded on Bloch's Theorem. Without this powerful first step in the mathematics we might 

appear to be doomed to be cast adrift in a sea of approximations. This is however not 

entirely so -- as always, some elegant, exact, and quite simple mathematical truths lie 

behind the empirical generalisation. We shall review below some exact results for a 

Hamiltonian which provides a somewhat idealised model of an amorphous semiconductor 

such as Si or Ge. The Hamiltonian is not capable of giving a really accurate description of 

these semiconductors. On the other hand it is not so oversimplified as to be irrelevant to a 

qualitative consideration of their properties. Our approach is therefore complementary to 

that of Klima and McGill3), since we have sought exact results for a crude Hamiltonian while 

they have sought approximate results for a more accurate Hamiltonian.  
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The Hamiltonian that we use involves four basis functions 4 per atom. There is a matrix 

element V1 between functions associated with the same atom i (but different bonds) and 

V2 between functions associated with the same bond./ (but different atoms). Implicit in this 

definition is the assumption that the structure in which these atoms are arranged is such 

that each atom is tetrahedrally coordinated with its nearest neighbors. This perfect four fold 

coordination is a feature of the random network model of amorphous semi-conductors 4). 

In deriving most of our results we do not use, implicitly or explicitly, any further details of 

the structure, which is just as well since these are not precisely specified experimentally or 

theoretically at present. The structure can therefore be any four fold coordinated network, 

whether periodic or disordered. If it is disordered, we call this "topological disorder" to 

emphasize the fact that we have a Hamiltonian whose matrix elements are the same 

everywhere in the structure but the connectivity of the structure is disordered.  

For V2 = 0 such a Hamiltonian describes an array of decoupled atoms each having an "s-

state" at E= 3 V1 and triply degenerate "p-states" at E= — V1. For V1= 0 it describes 

decoupled bonds, each with bonding and antibonding states and E= ± V2. When both matrix 

elements are nonzero, it may be shown 5) that the eigenstates still fall into two separate 

bands with zero density of states between them. For | V1/ V2, | <1/2 the bands are of 

bonding and antibonding character, containing 2 states per atom (not counting spin), and 

are the familiar valence and conduction bands. There is a gap between them of magnitude 

(at least)  

Gap = 2|V2| - 4|V1    (1)  

Thus the gap is not destroyed by topological disorder. 

Further results which have been obtained6-9) for this Hamiltonian are briefly summarised 

below.  

(1) The bounds are all attained for the case of the diamond cubic structure so the gap takes 

its minimal value for this case).  

(2) There are delta functions of weight unity in the density of states at the top of the valence 

and conduction bands, for any structure 6).  

(3) The average fractional s-like (p-like) and bonding (antibonding) character of wave 

functions may be derived as a function of the energy 6, 7). 
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(4) The density of states may be related to that generated by a much simpler Hamiltonian, 

involving only one basis function per atom. This simplifies calculations and provides a proof 

that when the delta functions are discarded, what remains is symmetric about the center of 

the gap?).  

(5) The existence of the band gap can also be proved when the Hamiltonian is generalised to 

include a further matrix element V3 which connects functions (/),; for neighboring atoms 

and different bonds, one of the latter being the bond connecting the atoms 8). The 

alternative proof 8) which provides this generalisation also goes through without the 

assumption of the orthogonality of the two orbitals associated with a given bond.  

(6) The proof may be generalised to the case of a Hamiltonian appropriate to a compound 

semiconductor, having diagonal matrix elements + Vo associated with the atoms of one type 

and — V0 for the other type?). It is necessary to further assume that these lie on 

interpenetrating sublattices, which is not compatible with the existence of five fold rings in 

the amorphous structure. This point will merit further consideration when the structures of 

amorphous III—V compounds are more accurately characterised. The gap for the com-

pound is?)  

Gap = 2 (𝑉𝑉2
2 + 𝑉𝑉0

2)1/2 − 4|𝑉𝑉1|        (2)  

It bears an intriguing resemblance to the semi-empirical formula which is central to the 

recent work of Phillips 10) on crystalline semiconductors.  

(7) For any of the above Hamiltonians, the density of states is the same for diamond cubic, 

wurtzite, and all the related "polytype" structures obtained by arranging close packed layers 

of diatomic molecules in a close packed structure 9).  

(8) For the Hamiltonian in its simplest form, the total energy of the valence band is lower for 

the random network than for the above crystal structures 9).  

While all these results appear to be new, perhaps the last is the only really startling one. 

Note however that it is derived for a Hamiltonian with purely topological disorder. Bond 

stretching and bending, which raise the energy of the amorphous solid, are not represented 

in the model.  

How accurate is the Hamiltonian on which this study has been made? This question can best 

be answered by comparing the band structure which it gives for the diamond cubic 

structure with a more realistic calculation. Figs. 1 and 2 present such a comparison for the 
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case of Ge. The valence band is reproduced rather well but the conduction band is not. Note 

that the delta function in the density of states in the valence band corresponds to a sub-

band which although not flat in reality is confined to a width of a few eV. Inciden-tally the 

transfer of the delta function 8, 7) (or flat band) from one side of the gap to the other on 

increasing I V1/1721 through the value has a simple counterpart in nature 

 
Fig. 1. Band structure of diamond cubic Ge as calculated using the Hamiltonian of ref. 5 (left-

hand side) with VI = — 2.5 eV and V2 = — 6.75 eV is compared with the calculation of 

Herman et al.11) (right-hand side). In our previous works) the topmost X level was 

incorrectly labelled Xi. We wish to thank F. Herman for pointing this out. 
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Fig. 2. Densities of states corresponding to band structure calculations of fig. 1. Top —

Herman's calculation13); bottom — our calculation. 

It produces the type of band structure which obtains in grey Sn 12). It is very evident in the 

present model why dilation of a crystal should change the band structure in that 

direction13) (since (V2 should decrease) and why introduction of a heteropolar component 

in the Hamil-tonian produces the opposite effect14) [since |V2| effectively increases7)]. In 

this and other ways we have found that this Hamiltonian, as well as providing insight into 

properties of amorphous systems, actually helps in the un-derstanding of the qualitative 

features of crystalline band structure, by virtue of its transparent simplicity.  

We now turn to the question of the implications of these results for the interpretation of 

the properties of real amorphous systems. One should not jump to the conclusion that a 

zero density of states in the gap has been fully explained or predicted. The Hamiltonian that 

we have used provides insight into the effects of topological disorder at the expense of the 

neglect of quantitative disorder (the variation of matrix elements such as V1 and V2 

throughout the structure). When this is taken into account, a tailing of the bands into the 

gap region seems likely. At this point two conclusions are possible to escape a dilemma. 

Either the experiments should not be interpreted as implying a zero density of states, or 

there is still some important element missing from our theoretical picture. Phillips 15) 

suggests the latter conclusion, and further advances the hypothesis that the equilibrium of the 
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structure is the missing element. This is an intriguing idea and it would seem that the recent 

work of Connell and Paul 16) on the pressure dependence of optical properties lends it some 

support. If, as Phillips suggests 15), the amorphous structure relaxes into a configuration 

such as to exclude states from the gap, thereby lowering the free energy, then the effect of 

pressure should be to cause these states to encroach upon the gap, since the strong nearest 

neighbor repulsion increasingly constrains the structure to a particular configuration. Thus 

there should be a significant anomalous negative contribution to the change of the gap 

under increasing pressure, without much change in the broader features of the density of 

states. The measurements of Connell and Paul14) reported at this conference would appear 

to be in accord with such a picture.  
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