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Abstract: In this paper we discuss the equation that governs the conduction of heat through a body.
We begin with the “Heat equation” (HE) in one — dimensional case in a bounded domain, by the
Fourier’s Point of view,by numerical approach using Finite Differences Methods (FDM), Bender —
Schmidt recurrence equation (BSRE), by the view ofRadial Function, andby Implicit Collocation
Technique (ICT), finally theCrank Nicolson Schmidt (CNS) solving partial Differential equation (HE
Only), by using an example and get the reasonably coincide approximate solution compare with exact
solution and also we explain CNS is still useful like as a major role to solve HE. Discuss with
numerical example for each methods.
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1. INTRODUCTION

Partial differential equation (PDE) occurs in many branches of applied mathematics and Engineering
mathematics. It appears in description of physical process, for example Hydrodynamics,
elasticity,quantum mechanics, and electromagnetic theory etc. The solution of the equation describes
possible physical reactions that have to be fixed through boundary conditions, which may be quite a
different character. We shall confine ourselves to second order partial differential equations as the
equations are found in the applications. First we classify the partial differential equations, which is in
category of parabolic equation.
1.1. Classification of the partial differential equations — Basic Concepts:

The general linear partial differential equation in the second derivatives is of the form

9%u 9%u %u du du
AM—2+BW+C6}/—2+DE+E5+FU—GOI'}
Ay + Buyy, + Cuyy, + Du, + Euy + Fu =G > (1.1)

Where A,B,C,D,E and F are all functions of x and y
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Note:

For our convention in PDE we can denote,

_au_ _au_ _azu_ _62u. dt_azu
p_ax'q_ay'r_axZ'S_axay'an ~ Qy?
And also we have
d _6ud +6u
T dy
= du = pdx + qdy
d —d[au]—(ad + 24 >8u_62ud + Y gy = v 4+ 5d
P=ox] = \ox ™ 0yy6x_8x2 x dy? y =raxwsay
— dp = rdx + sdy, In this case let us take- = 2
p Y 0xdy dyox

Similarlydg = sdx + tdy

Now the general linear equation in the second derivatives is of the form

Ar+Bs+Ct+Dp+Eq+Fu=G > (1.2)
Note:

Equations (1.1) and (1.2) can be classified with respect to the sign of the discriminant.

Since (1.1) and (1.2) have discriminant

Ay= B? — 4AC »(1.3)

In the following manner:
a. IfA;< 0, at the point in the x, y - plane, the equation is called elliptic.
b. IfA;> 0, at the point in the x, y - plane, the equation is called hyperbola
c. IfA;= 0, at the point in the x, y - plane, the equation is calledparabola.
Note:
We can extend to the point(x, y)in n- dimensional space also in the same way we classified.
Our aim only considers HE that is parabolic equations.
1.2. Parabolic Equation:
As above discussion we easily conclude that, a partial differential equation in a regionR. If

Ay= B? — 4AC = 0, at all points of the region, the initial value of the function u at time t = 0 and

ou (x,t)
at

the normal derivative on the boundary are the required boundary conditions. In problem of this

type, the solution is not defined in a closed domain as in the case of Laplace’s equation but is
propagated in an open domain starting with prescribed conditions on an open boundary as shown in

figure - 1 below:
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Boundary conditions
Prescribed here

Boundary Conditions

e (e Prescribed here

Figure 1
2
The one — dimensional heat — flow equation is‘;—lz = a? ZTZ it is an important equation of the parabolic

type. We will see this equation how do develop to solve in the following different points of view.
2. FOURIER POINT OF VIEW ]

In ™31 Fourier considered variants of the following basic question. Let there be given an insulated,
homogeneous rod of lengthmwith initial temperature at each x € [0, ]given by a function f(x) (Fig.
-2) Assume that the endpoints are held in temperature 0, and that the temperature of each cross —
section is constant. The problem is to describe the temperature u(x,t)of the pointxin the rod at

time t. Fourier preserved the fundamental importance of this problem as follows:

Figure 2
Primary causes are unknown to us; but are subject to simple and constant laws, which may be
discovered by observation, the study of them being the object of natural philosophy.
Heat, like gravity, penetrates every substance of the universe, its rays occupying all parts of space.
The object of our work is to set forth the mathematical laws which this elementary obey the theory of
heat will form of the most important branches of general physics. Let us now describe the manner in
which Fourier solved his problem. First, it is required to write a differential equation thatusatisfies.
We shall derive such an equation using three physical principles
a. The density of heat energy is proportional to the temperatureu, hence the amount of heat
energy in any interval[a, b] of the rod is proportional tofab u(x, t) dx.
b. Newton’s law of Cooling: The rate at which heat flows from a hot place to a cold one is
proportional to the difference of the temperature. The infinite decimal version of this
statement is that the rate of heat flow across a pointxfrom left to right is some negative

constant times d,u(x,t).
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c. Conservation of Energy: Heat has no sources or sinks
Now (c) tells us that the only way that heat can enter or leave any initial portion[a, b]of the rod is
through the end points. And (b) tells us exactly how this happens. Using (a), we may therefore write

as

;—t fu(x, t) dx = n?[0,u(b,t) — 0,u(a,t)] where n?, it is a positive constant of proportionality.

We may rewrite this equation

J2 0,uCx, ) dx = n? [ 02 u(x, t)dx , differentiating in b, we find that

d,u = n%02u , and that is the required HE.

An English biologist J. B. S. Haldane (1892 — 1964) had this remark about the one — dimensional HE
“In scientific thought we adopt the simplest theory which will explain all the facts under consideration

and enable us to predict new facts of the same kind”. We can find such law as:

2
Q? LW v > (2.1)

dx? _E

Assume that the constant of proportionality either n%or a®equals 1. Fourier guessed the equation (1)

has the solution of the form u(x,t) = a(x)B(t), substituting the guess in (1) yields

(B (0) = &' (Op(or s = L1 > (22)

Since the left hand side of (2.2) is independent ofx, and the right hand side of (2.2) is independent oft

_a® B'(t) = KB(t)
o~ T w7 {a”(x) - Ka(x)

=There is a constantK, such thatﬁ—(t) =

We conclude that S(t) = CeX?, the nature of S8, and hence of a, thus depend on the sign ofK. But
physical consideration tells us that the temperature will dissipate at times goes on, so we conclude
that K <0

= a(x) = cos(vV—Kx) anda(x) = sin(vV—Kx), they are the solutions of the differential equation
for a. The initial conditions u(0,t) = u(mw,t) =0

Since the ends of the rod are held at constant temperature 0, eliminate the first of these solutions and
force K = —j%,and j as an integer. Thus Fourier found the solutions

Ui (x, 1) = e tsinjx, for j € N, of the heat equation

By linearity, any finite combination}; b; e‘fztsinjx, of these solutions is also a solution. This
assertion can also extend to infinite linear combinations. Using the initial condition u(x,0) = f(x),
again raises the question of whether any f(x) on [0, ], it can be written as a finite (infinite) linear
combination of the function sin jx

Fourier solution to this last question (of the function spanning essentially everything) is roughly as

follows. Suppose that £, it is a function that is representable
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f(x) =%; b sinjx > (2.3)
Setting x = 0, itgives f(0) =0
Differentiating both sides of (2.3), and setting x = 0, we have

£'(0) = ;O=1 jb; , successive differentiating k times and evaluate at 0, we get

£10(0) - ;(—1)%%., for kis odd < 0
0, forkiseven =0
Thus Fourier devised the system of infinitely many equations in infinitely many unknowns{bj}. He
proceeded to solve this system by truncating ittoa N X N system (The first N equations restricted to
the firstNunknowns), solved that truncated system and let N — oo. Suffice to say that Fourier’s
arguments contained many dubious steps ** !

The upshot of Fourier’s intricate and lengthy calculations was that

b = %fonf(x) sin jx dx > (2.4)
By modern standards, Fourier’s reasoning was specious; for he began by assuming thatf possessed an
expansion in terms of sine functions. The formula (2.4) hinges on that supposition, together with steps
in which one compensated division by zero with a later divisionco. Nevertheless, Fourier’s methods
give an actual procedure for endeavoring to expand any given f, in a series of sine functions, for
example:

2.1.Example for Fourier’s view of H E1:
“Suppose that the rod in the setup of the HE is first immersed in boiling water so that its temperature
uniformly 90°C. Then imagine that it is removed from the water at time t = 0 with its ends
immediately put into ice so that these ends are kept at temperature 0°C. Find the temperature u =
u(x, t) under these circumstances.
The initial temperature distribution is given by the constant function f(x) =90;for 0 <x <m
The boundary conditions and other initial conditions are as usual. Thus our aim is to find the sine
series expansion of this function f, note that b; = 0, whenj, it is even. Forj, it is odd we calculate

that

b:

) aslongas j, itis odd

2 .. 2x%90 [cos jx1* 360
==/"90 sm]xdx=——[—]] =
m Y0 T

iy T m
360 1 1
= f(x) =— (e_t sinx + —e %t sin3x + —e >t sin5x + -+ )
j 3 5
Now, referring to (2.3), and the preceding discussion from our general discussion of HE, we get

36 1 1
u(x,t) = —,(e‘t sinx +=e % sin3x + =e2°! sin 5x + )
] 3 5
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2.2. Example for Fourier’s view of H E 2
Find the Fourier series expansion of period 2m, for the functionf (x) = sintxin — Tt <x <m
Solution:
Sincef(x) =sinmxin—nt<x<m

= f(x), itisan odd function then Fourier expansion of f (x), contains only sine terms
(0] 2 T
= f(x) = Z b, sinnx,Where b, = —f f(x) sinnx dx
n=1 TJo
Sincesin x sinnx = % [cos(n — m)x — cos(n + m)x]

2 (™1
> b, = ;f 3 [cos(n — m)x — cos(n + m)x] dx
0

1 Vs
=>b, = Ef [cos(n — m)x — cos(n + m)x] dx
0

1 [(sin(n —mx) (sin(n +mx)]"
> b, =— -
T n—m n+mn

0

i _ 2 : 2
Sincesin0 = 0 = bn _ %[(smin_nn)n) (sin (n+n)7r)] [(sm (nn - )) _ (sm (mt+7r ))]

n—m

1 [(sinnncos w? — sinm?

= b, =—

cosnm) (sinnmcos m? + cosnmsinm?)
n—m n+mn

1 [(—sin 2

Sincesinnmt = 0= b, = ;[

cos nm)  (sinm? cos nn)

n—m n+m

Sincecosnt = (—1)" and also sinm? # 0, because 1 , it is neither 0 nor an integer

1[((=sinn®)(-=1)™) B (sinnz)(—l)"]

= b, =—
T n—m n+mn

(—D"sinm? 1 1 (-D"sint?m+a+n—a

T n—-m n+mw s n? — 2

=(—1)"+1sinn2[ 2n ]

/i1 n2 — 2
2nsinm?
=(-1 n+1_~—“"""
= bn ( ) TL’(TLZ _ 7T2)
c 2nsinma
=>f(x)—Zb sinnx =Z{( 1)+l }sinnx
n(n? —m?)
n=1
) = Zsmani n(=1)"1)
- _
fx ) (nZ—nZ) sinnx
oo 2 sinm? i n(=1)"*)
sinmx = ACETD sinnx

We conclude that Fourier point of view, we need lengthy calculations.
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3. NUMERICAL VIEW OF FINITE DIFFERENCE METHOD (FDM)

Sometimes solving partial differential equation by ordinary methods is very difficult and laborious. So
we go in for numerical methods of solving partial differential equations, the method of finite
differences is most commonly used, in this method the partial differential coefficients is replaced by
their finite difference approximations.

3.1. Solution of Parabolic Equation by FDM
We know that the one dimensional heat equation is

ou ) 9%u )
=a where a*“ =

at 0%x ep

Here e is the specific heat of the material, p is the density and k is the thermal conductivity.

The above heat equation can be written as

0’u 1 ou 1

mzﬁazumzﬁutzaut, Wherea:ﬁﬁuxx—autzo
Note that A =1,B = 0,C = 0,thenB? — 4AC = 0, so that this equation is parabolic
Let us solve by the method of finite differences the equation

Uy = AU (3.1)

v

With the boundary conditions,

u(O, t) = To
u(l,t) =T, > (3.2)
And the initial conditions

u(x,0) = f(x) > (3.3)

We select spacing h for the variable x and spacing k in the time direction

We know that

L Uiy — 22U+ U

CUpj41 — U
uxx - h2

andu; = .

Equation (3.1) becomes

Ui, —2U; jFUiy) Ujjp1—Ug) .
2 s _ g () gy

k
Uijer =y = g (o) = 2 i) = Awiogy = 2wy ), where A= oo

It is called two levels formula because it is a relation between the function values at two levels
Or we have

Upjr1 = AUipg; + (1= 20U + Auq > (3.4)

It is called Explicit formula it valid if 0 <A1 <

N | =
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The boundary conditions (3.2) can be put in difference form as

ug; =Ty
u,j =Ty| forj=12,.. » (3.5
Note that herenh = [
The initial condition (3.3) is
u;o = f(ih) for i=1,2,.. » (3.6)
Equation (3.4) gives the value of
u at x = ih, at time t; +k interms of values of u at x = (i — 1)h, ith
and x = (i + 1)h, at time t;
Since u(x,0) = f(x), u is known at t =0
So the recurrence equation (3.4)
Allows the evaluation of u at each pivotal point x; at any timet;
Equation (3.4) becomes particularly simple, if for a given
h,k is so chosen that the coefficient of w;; vanishes. Thatis,
1-20=0=1=1 , that is% =L ork= hz—a. In this case (3.4) becomes
2 h2a ~ 2 2
Upje1 = %[ui+1,j + ui—l,j] » (37)

That is the value of u at x = x;
at time ¢, is equal to the average of the values of u at the
surrounding points x;.1 and x;_, at the previous time t; this is shown in figure:3

This method is called the Bender - Schmidt recurrence equation

Uij+1

®

Ui—1; Y Uit
Figure 3 Schematic diagrams for Bender - Schmidt recurrence equation
=The value of A =Average of the values at B and C = %(B +0C)
Note that the solution obtained by using Bender Schmidt recurrence equation is stable when
A< % otherwise the solution is unstable and also the solution level at any point

(i,j + 1), onthe (j + 1)th level it is expressed in terms of the solution value at the points
(i—1,)),(,j)and (i + 1,j) on the jth level, such a method is called explicit formula, so that

Bender Schmidt recurrence equation is the explicit formula.
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3.2. Example of Finite difference Bender — Schmidt Recurrence equation View:

Solve u,, = u,subject to
u(0,t) =0 =u(1,t) and u(x,0) =sinnmx, for0<x <1
Since h and k, they are not given we will select them properly and use Bender — Schmidt method.

Since

k= %hz = %hz since a = 1, and the range of x is (0, 1), and take h = 0.2

_(0.2)?

=k >

=0.02
Since the formula isu; ;41 = 17{ui_1,j + U1, } by 3.7)
And also u(0,0) = 0,u(0.2,0) = sin% = 0.5875; u(0.4,0) = sin%” = 0.9511;

1(0.6,0) = sing?n =0.9511; u(0.8,0) = sin%ﬂ = 0.5875; and sin(1,0) = 0,

We can form the table as following manner:

x — direction —

i 0 1 2 3 1 5
e |7 0 0.2 0.4 0.6 0.8 1.0 Rows
M ICH o\assm/mww Row 1
Lol o0z fo 04756 07695 07695 04756 0 Row 2
¢ |2 00 |0 03848 06225 0.6225 03848 0 Row 3
£ ]3] 006 |0 03113 05306 05306 03113 0 Row 4
° |4 o008 |0 02511 04074 04074 02511 0 Row 5

5] 01 |o 02037 03296 03296  0.2037 0 Row 6

Explanation of the table working:

In the table by using formula (3.7) putting j = 0, we getu; ; = 17{“1'—1,0 + ui+1,0} —»(3.9)

Putting i = 1, in (3.8) we get, u; ; = 17{140,0 +uye) = {0+0'9511} = 0.4756
Putting i = 2, in (3.8) we get, uy; = 17{u1,0 +uzg} = {058752&} = 0.7695
Putting i = 3, in (3.8) we get, uz; = 17{1,12,0 + Uy} = {w} = 0.7695
Putting i = 4, in (3.8) we get, uy; = 17{“3,0 +usp} = {0'95;”0} = 0.4756

In the above table second row is filled, similarly putting j = 1, 2, 3,4 and 5, the other rows are filled
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Note:

Suppose assuming h = k=1,in this case 1 = ak? =1, it violets the condition of for use of Explicit

formula, and the solution is not stable, it is not a practical problem, since unstable solutions don’t

exist.
4. RADIAL BASIS FUNCTIONS VIEW (RBF) 891

Interpolation of a given set of points is an important problem especially in higher — dimensional
domains. Even though polynomials is an important tool for interpolating a given set of points in one
dimension, the use of these functions leads to difficulties in higher — dimensional domains. When we
employed these functions, the arrangement of points in the domain of the problem which must have a
certain form, however, this limits us when interpolation of a scattered set of points is needed. RBF are
most efficient instruments for interpolating a scattered set of points which have been used in the last
few years.

RBF methods have been introduced for interpolation of scattered data. Some well — known RBFs are
listed below in table 1.

Table 1: Some Radial Basis Functions

Name of Function Definition

Gaussian (GA) Y(t) = exp(—cr?)
Hardy Multi quadric(MQ) W(t) = m

Inverse Multi quadric(IMQ) W(t) = (\/m)—1

Inverse quadric(IQ) Y(t) = (> + )7t

Note:
In the above table r = ||x! — x||,, all functions are globally supported, infinitely differentiable, and
depend on a free parameter c.

4.1.Property — Globally Supported Radial Functions:
Let 7, it is the Euclidean distance betweenx® € R?, and any x € R?, and thenr = [|x* — x]|,.
A radial functionyp® = ¥ (||x* — x||,), depends only on the distance between x € R? and x' € R%
This property gives us the radial functiony?, they are radially symmetric about x*, and then, it is clear
that the functions in above table: 1 is supported, infinitely differentiable, and depends on a free
parameter ¢
Now, let us takexy, ..., xy, it is a given set of distinct points inR%. The concept behind the use of

RBFs is interpolation with the linear combination of RBFs of the same types as follows:
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F(x) = Xis A (%) »(4.1)
Wherey; (x) = ¥(||x — x;]|) and A;, they are known scalars fori = 1, ..., N.

The unknown scalars 2;, they are chosen, so that F(x;) = f;, for j =1,..,N, it results in the
following linear system of equations:

Ay =f > (4.2)
Where A4;; = 1/Ji(xj);y = [A4, ..., Ay] and f = [f1, ..., fn]

By the property of globally supported RBFs, we choose i global support, this method produces a

dense matrixA4, by Schoenberg’s theorem At is to be positive definite and therefore non — singular,
for the distinct interpolation points for GA, IMQ and 1Q, again by the Micchelli theorem ™“#4 matrixA
it is invertible for distinct set of scattered set of points in the case of MQ. Even though matrixA4

It is non — singular, usually it is mostly ill — conditioned = the condition number ofA4, it is

K (A) = Al 1Al for 1= 1,2, ... » (43)

It is a too large number=a small perturbation in the initial data may produce large amount of
perturbation in the solution = use more precise arithmetic’s than the standard floating point
arithmetic in this method’s computation. For a fixed number of interpolation points, the condition
number of A depends on the shape parameter ¢, support of the RBFs and the separation distance of
interpolation points. Also, the condition number grows with N for fixed values of the shape of the
parameter c. In practice, the shape parameter must be adjusted with the number of interpolating
points in order to produce an interpolating matrix which is well conditioned enough to be inverted in
finite precision arithmetic ). Despite various research works which are done to develop algorithms
for selecting the values of ¢, which produce most accurate interpolation (e.g. see 1), the optimal
choice of shape parameter still as an open problem.
4.2. Method of Solution for One — Dimensional Problem:
Consider Lu(x,t) = q(x,t), for (x,t) € (a,b) X (0,T] »(4.4)

Where(a, b) c R, it is an open special interval and L it is a second — order linear parabolic operator,

with the following initial and boundary conditions:

u(x,0) = f(x) forx € (a,b) >(4.5)
u(a,t) = g1(t) for t € (0,T] > (4.6)
u(b,t) = g,(t) for t € (0,T] » (4.7)
First, the domainQ = (a, b) x (0, T], it is decomposed as

Q=U5_ Q »(4.8)
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WhereQ; = [a, b] X [(i — 1)Ty,iTy], for a sufficiently small value ofT; :g and s, it is a positive

integer. We solve the problem in equations (4.4) to (4.7), in each sub domain Q; using the collocation

technique, the sub domains are Qq,Q,, ..., Q;, ... Q. For solving (4.4) to (4.7) in Q, let

x1 = (Gt € > (4.9)
It is a set of scattered nodes. Using the radial basis collocation method, the solution of the problem
in[a, b] X [0, Tl]! it iSﬁl = Z?]:l aq l/)i (x, t) > (410)

Where ;(x,t) = (|| (x,t) — (x;, t;)]), for a given radial functiony and ay;, fori=1,..,N
They are unknown. In fact RBFs are used for discretization of both time and space variables in
[a, b] x [0,T;]. Now, by the collocation approach, impose the approximate solutionti; to satisfy the

given differential equation with initial and boundary conditions at(x;, t;), fori =1, ...,N

=We have

Ly (x;, t7) = q(x;, ty), for (x;, t;) € (a,b) X (0,T] >(4.11)
0y (x;, t) = f(x) for (x;,t;) € [a,b] X {0} > (4.12)
Uy (x;, ) = g1(&) for (x;,t) € {a} x (0, T4] > (4.13)
Uy (x;, t;) = g2(&) for (x;,t;) € {b}x (0,T;] » (4.14)
Those result in a linear system of equations

Aa; = by > (4.15)

By solving this system of linear equations (4.15), unknown values areay;, fori =1, ..., N,

They can be found. Generally, the obtained linear system is ill — conditioned. Here 4, it is N X N
matrix. If Ty, it is chosen such that a small number of the collocation points provide an accurate
approximation in[a, b] x [0, Ty ];Ait will be a low — dimensional matrix

= Finding Permutation Lower Upper triangular decomposition (PLU) of 4,

= We have PLU(A)a; = by »(4.16)

WhereL = [l;; | and U = [uy;], respectively withl;; =1 fori=1,..,N
Note that this factorization needs @(n®), number of operations, and alsoP = P~1, sinceP, it is a
permutation matrix

Again using the forward substitution with O (n?), number of operations we solve

Lyl = Pb1 :(418)

Then, finday, by solvingUa; = y4, then using backward substitution it needs 0(n?), number of
operations, consider the following problemin Q, = [a, b] X [Ty, 2T;], it looked as

Lu(x;, t; + Ty) = (x;, t; + Ty), for (x;,t; + Ty) € (a,b) x (Ty,2T;] »(4.19)
u(x,0) =u(x,Ty) for (x;,t;) € [a,b] X {Ty} > (4.20)
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u(a,t) = g1(t) for (x,t) € {a} x (Ty, T] » (4.21)
u(b,t) = g,(t) for (x,t) € {b} x (T, T] ¥4.22)

Set y, = {(x;, t; + T1)|(x;,t;) € xq,fori=1,..N}, as the set of collocation points in [a,b] X
[Ty, 2Ty ]. Using the RBFs method the solution of the problemin[a, b] x [Ty, 2T;] is

fly = NIy az; Pi(x, 1) X4.23)
=We have

Lu(x;, t; + T1) = q(x;, t; + Ty), for (x;,t; + T1) € (a,b) x (Ty, 2T4] »(4.24)
ux;, t; + Tp) = a(x; Ty) for (x;,t;) € [a,b] X {T} »(4.25)
ulx, t; +T1) = g1(t; + T1) for (x;,t;) € {a} x (Ty,2T1] »(4.26)
ux;, t; +T1) = g2(¢ + T for (x;,¢) € {b} X (Ty, 2T1] »(4.27)
Those result in a linear system of equations

Aa, = b, > (4.28)

Sincetl,, it is the linear combination of radial functions, and then same coefficient matrix be obtained.
This property obtained from the fact that the value of a radial function is

Y t) =yl t) = (x5 t)l) . depends  only ||(x,t) —(x%t")ll; , not the
points(x, t) and (x*,t*)

=The unknown vector a,, it is obtained from Ly, = Pb, and Ua, =y, »(4.29)
In (4.29) we used only O (n?), number of operations, we can precede remaining iterations, with choice
of points in Q;, = [a, b] X [(k — 1)Ty, kTy] then y;, = (x;, t; + (k — 1)Ty) fork =1,...5s,
Finally we getLy, = Pb, and Uy, =y fork = 2,3, ...
It yields the approximate solution of the problem(,, =the approximate solution is obtained in
[a,b] X (0,T] =U;-; Q; , only by LU - factorization of a low — dimensional matrix A
In fact, in each sub — domain, the coefficient matrix of the resulted linear system which can be
obtained from the discretization of the problem is same, therefore, in each sub — domain only the right
hand side vector needs to be found.

4.3.Example for RBF’s View in one dimensional case®”’
Consider the heat equation u,, = u;, foro <x <1and 0 <t < T subject to

u(0,t) =0=u(1,t) for0<t <Tand u(x,0) =sinmx, for0<x <1

We use Gaussian radial basis functions with Ax = 0.1,c = 4,T; = 0.02, and the set of equidistant
collocation points for N = 33
First, this problem is solved in[0, 1] X [0,0.02] and 6 = 16; floating point arithmetic’s are used in
this computation. The other approximations have been obtained only by forward and backward

substitutions.
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In this method, the solution of the problem is obtained in a closed form only by LU — decomposition

of 33 x 33 matrix A. In the following table — 2, some values of the shape parameter c, the condition

. 1 .
number of matrix, the RMS errorE? = \/ﬁzﬁ‘illu(xi, t;) — ii(x;, t;)|, and

The maximum error E* = max;<y|u(x;, t;) — a(x;, t;)|, they are listed for Gaussian RBF, and
equidistant collocation points, where M, it is the number of collocation points x € [0,1] and t €
[0, 1], for Ax = 0.1 and At = 0.01, and also we conclude from the table — 2, the choice of the shape
parameter has an auxiliary role in the stability of the problem. The dimension of matrix, it should be
small sufficiently guarantee the stability of the solution of the resultant linear system.

Table 2: Shape of parameter values ¢, E2, E®, and corresponding condition number of

matrix A
Shape parameter ¢ E? E® Condition number of A
0.5 90651 x 103° 0.70000 x 1074 0.19676 x 102%°
1 33136 x 104 0.20000 x 103° 0.20434 x 1019
2 0.50227 5.0001 0.93751 x 1018
3 0.10196 x 107! 0.71266 x 1073 0.66616 x 108
4 0.10384 x 107! 0.74346 x 1073 0.40811 x 1018
5 0.10400 x 107! 0.76029 x 1073 0.11529 x 108
6 0.10150 x 107! 0.75571 x 1073 0.14832 x 107
7 0.95715 x 1072 0.73241x 1073 0.30267 x 1016

5. View of Implicit Collocation Technique HE:

In this technique, consider the problem of finding u(x, t), for the parabolic equation

du

- = % +0(x, t)with0 <x <1 and 0 <t < T, and also with boundary conditions

u(0,t) = go (t) for0 <t <T and u(1,t) = g;(t) for0 <t <T, again we need the nonlocal
time weighting initial condition u(x,0) = %\, B; (x) u(x,T;) + @(x), with

0<Ty < <Ty=Tand 0<x<1 WhereQ),gO,gl'ﬁj,T}- and ¢,

They are known functions, while the function wu, it is unknown.

The existence, uniqueness and continuous dependence of the solution of the above problem are shown
in [6] with the following assumption that is the weights g; for j =1,2,...N,

It must satisfy the inequality

Dy (1Tea]| e ™7 < 1,for0<x <1, herell. |, it is the maximum norm onZ2(0, 1).
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In it is important that the maximum principle can be employed like the standard parabolic initial
boundary value problems * ° 4 Our previous “Finite Difference Approximation view” is also
developed for non standard initial or boundary condition for one — dimensional parabolic equations *
%12&13 Before explain Collocation technique, we discussed again the method of evaluating u(x, t),
by Finite Difference Scheme.

5.1. Finite Difference Scheme (FDS):
First the domain[0, 1] x [0, T], partitioned into an M x M mesh with the spatial steps size
h = % in x direction and the time step size k = % respectively, grid points(x;, t; ), they are defined by
x;=th,fori=0,1,..,M and t; = jk, for k =0,1,...,N, where M, N, they are integers.
The notations u{ Br.i» p; and cp{ they are used for the finite difference approximation of

u(x, ), B (x), 9(x;) and @(x;, t;), respectively, use direct simulation to the derivation of the

2
One — dimensional equations';—lt‘ = ZTZ + @(x,t) with 0 <x <1 and 0 <t <T, with boundary

conditions u(0,t) = go (t) for0<t <T and u(1,t) = g.(t) for0<t<T

The explicit FDS leads to the following scheme for above equations that is

u{“ = su{ +(1- 25)(u{_1 + su{H) + k(p{ »(5.1)

Using the initial condition u(x,0) = ¥/, B; (x) u(x,T;) + ¢ (x), with
0<T) < <Ty=Tand0<x<1 where®,gy,91 T and ¢, they are known functions,

while the function u, it is unknown. We get

w =% B uZVj o withl<i<M-1 >(5.2)

Using two given boundary conditions we get

w =0,u}, =0 for0<j<N > (5.3)
If a directed method is used to solve u{ we deal with a large non — linear system, but a simple
iteration procedure be used because of the parabolic nature of the given problem.

Let us take(u®)(©® = 0, it is the initial guess and then we get

NO!
(u?)(Hl) = Zj-vzl B.i (ufv’) + @, fori=1,2,..,M—1andl=0,1.2,.. > (5.4)

where (u{)(l)

It is the finite solution of the forward Euler scheme with the initial data(u?)( .
Note:

a. The range of stability for this procedureis 0 <s < %.[18]

b. This current explicit finite difference method for the numerical solution of the one —

dimensional diffusion equation isthe  restriction of the size of the time step due to stability
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requirements. These restrictions necessarily extremely small values of k, for most problems
these are impractical methods, see the example of FDM.
5.2. The three — point — Implicit Backward Time, Centered Space (BTCS) Method:

It uses the formula over the time stept; to ¢ 14, itis

—su{fll +(1+ Zs)u{Jr1 — su{fll = u{ + kQ){:H fori=1,2,.M-1 »(5.5)

Note that the resulting system of linear algebraic equations is tri diagonal and it is solved by using
Thomas algorithm. Again this method is uncondionally von Neumann stable ™, values of u{“on the
boundaries x = 0,1, they are provided by the given two boundary conditions. The main disadvantage
of this implicit finite difference technique is the extensive amount of CPU times utilized in
determining the numerical solution compared to the explicit method for the same selections values
of s and h
5.3. Implicit Collocation Technique (ICT):

First the time — dependent partial differential equation is discredited in space, giving rise to a system
of ordinary differential equations with unknown functions at each spatial grid points. The implicit
collocation methods consist of approximating at each spatial grid point the solution by a polynomial
that depends on time. Then determine the coefficients of all these polynomials. Depending on the
given partial differential equation, we get a linear or non — linear system of equations, in this
technique the system is linear %, in which the unknowns are the coefficients. We can solve the
resulting non — linear system by a direct or iterative technique. Once the coefficients of polynomials
are determined, the approximated solution of the partial differential equation is computed on a given
time interval that depends on the degree of the polynomial ™®!

5.4.Procedure for ICT:

w1 () —2u; () +ui1(6)
h2

v

Let us takeu; (t) = +0;t) fori=1,..,.N—1
(5.6)

Note that u;(0) = u(x;, 0), and letP;(t), it is the rth degree of polynomial satisfying the system

(5.9) (given last) at each timet; forj=0,1,..,7r—1

= Pi(tj) = af)tjr + aitjr_1 ++d fori=1,...N—-1andj=1,..,r—1 ——(5.7)
2 . .
To solve% = ZTI; +0(x, t)with0 <x <1 and 0 <t <T, by the ICT the coefficients ay, ..., aj_;

fori =1,..,N —1 , they should be determined.

The coefficient a', it can be determined from the initial condition that is

al = P;(0) =u(x;,0) fori=1,..,N—1 > (5.8)
Using (5.4) the coefficients a', forr =0,1,..,r—1andi=1,..,N —1, it can be obtained by

the following procedure: This ICT developed by the combination of a finite difference scheme in
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space and a collocation technique in time and also it is employed is a second — order approximation in
space and an approximation of order r in time. With implicit collocation method, the solution of the
one — dimensional diffusion equation is approximated by polynomials. For a given time step, the time
interval where the solution is computed depends on the degree of the polynomials. The higher, this
degree is the higher order of the method is and the longer the time interval is and therefore it is
tempting to choose polynomials of high degree, in order to approximate the solution is relatively long
time interval by solving one linear system. To solve given parabolic equation by collocation
technique, a linear system which will be introduced 2

First we introduce some notations, they are

_ _1117 _ _117
Xz[[aé, e @1l e, [ad) 1,...,a£’_11]] andB=[[a},...,a}],...,[aﬁv L..,al 1]]

P = [[Py(te), o Py (tr—)], o, [Py—1(t0)s oo Py (&—D]]

Q= [[uo (o), s U (Er—1)], ey [un (o), vy Uy (tr—1)]]T

S = [[ug(ty) — 2at + a?, ..., u,(t_y) — 2at + a?]", ..., [al — 2a% + ad, ...,a} — 2a% + a3]", .., [a} =% — 24"t + uy (L), ..., a2 — 24!
+uy (1"
P = [[P(t0), o) Py (tr— )], o, [Py—1 (E0), woes Py—y (tr—D]T]”
[ t6 t6_1 to 'l
ot et .
a= | . . .| and A = Diagonal (a, ..., @),
ey gt - e

Where A, it is a block — diagonal matrix of order r(N — 1), and then we get

rgt =D e 2 1 A ; ]

o = =D 2 L e 0 W 0 |
: ; o ; | w1 2k 1|

rtiZd (r—=DtIZ% - 2t 1 | 0 o o &L —ZIrJ

Wherel., it is the identity matrix of order r, and also T, it is a block — diagonal matrix of order (N —

1, and then we get #/=0C0:0CD" ~.---0C.CO--- " ~DCO:0CD

Where C;; = —tirfll_j and D;; = tir__lj (h2(r+1—j)+2t;_y) fori,j=1,2,..,7
We can simply write as

S=TB+Q and M = h*A' —TA , and also the vector X, it is the solution of the linear system

MX =S »(5.9)
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a. If|D| =0, if and only if two valuest;_; and t;_,, they are identical. As the points t;_;
fori=1,..,r, theyare all distinct.

b. If|D| # 0, and then the linear system MX = S, it has a unique solution.

Example for ICT:*®

2
Considerthe one — dimensional equations‘;—lt‘ = 371; +0(x,t)with0<x<1and0<t<T, with

boundary conditions u(0,t) = go (t) for0 <t <T and u(1,t) = g1(t) for0 <t < T withN =
2

2
To solve% = ZTI; + @(x, t) , with boundary conditions and the non standard initial conditions

u(x,0) = ¥y B () u(x, T;) + @(x) , in this we have

N =2 and + 0(x,t) = (-1 + %) sinnxe™* > (5.10)
u(x,0) =ulx,T;) —u(x, T,) + (x) > (5.11)
@(x) =sinmx (1 — e + eh2) » (5.12)
9o (1) = 0=g, (1) » (513)

For which the exact solution is u(x,t) = e ¢ sinmx

Andalso 0<T; <T,=T; B; =1 and ; = —1, the results of the error inL'norm, with

T, = 0.5,T, = 1, computed for various values of h and k using this schemes report with u(x, 0), in
(5.10) in a non — standard form and found by (5.4) are obtained. In order to keep the accuracy the
stopping criteria € of the iteration tolerance is chosen by & = 0.5(h? + k), in all above computations.
That is let the initial guess

u® =0, and if|(u0)(l+1) - (uo)(l)| < g, for some |, then (u?)(lﬂ) and (uﬁv)(lﬂ) , they will be
accepted as the numerical initial value and final value respectively, and the computation will be
terminated: The results obtained by various values of T; showed that what the initial value we start
with u(x, t) approaches the steady state quickly as t increases, thus u(x,t), it can be calculated

accurately for larger t, which in turn gives a good next step initial updated data.
6. CRANK — NICOLSON SCHMIDT VIEW!!

For the parabolic equation
u(0,t) = To} And the initial conditions

u(l,t) = T1
u(x,0) = f(x), foro<x <l
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6.1. Procedure:

The given equation is u,, = au; » (6.1)
At the pointu; ; we have the following finite difference approximation foru,, on thejt" row

i1 T 20U Uiy
Uyy = hz

Similarly at the pointuy; ; .1, we have

o Uimtj41 — 22U 41 F Ui
Uyy = hz

Averaging these two approximations, we obtain

o Wis1j 412U U U, — 20 U4 (6.2
Uyy = 2h2 T )

Foru,, we use forward difference approximation

_ Uij+1 TU

Substitute (6.2) and (6.3) in (6.1) we get

Wi—gje1 = 2Ugjr F Uppr g+ Wimry — 2 ey a(ugi — )

2h? k
k
= o7 (Uimr 41 = 2Ugj a1 + Uiprjr + Uimr) — 205 + Uipry) = (Ugjen — Ugy)
ok
Settantha = A, we have
1 1
Elui+1,j+1 — Ayt E/Wi—l,jﬂ — U1 = AUy — E/Wiﬂ,j - Elui—u — U
1 1 1 1
= SAq i = A+ Dyjpg + 5011540 = =540, + (A= Doy =2 Ay, ——>(6.4)

This is called the general form of Crank Nicolson difference scheme. This equation (6.4) also called
the implicit formula, as it does not give the value of u at t = t; 1 directly in terms of the values of
u at t =t;. Though A it can take any value, we take A = 1in order to simplify the numerical work
involved. When A = 1, the Crank Nicolson’s difference equation takes the simplest form, and then

Equation (6.4) becomes,

1 1
= S Ui-1j+1 T+ Dyyjq + SUir1j+1 = T Ui-1) S Uit
= Uj—qj+1 — M1 T U1 = —Uim1j — Uit Orl
— »n/
~Ui—pj+1 T AU — U1 = Ui+ Ui ) >(6.5)

As far as possible, we should try to make use of equation (6.5), by proper choice of
h either 'and’, 'or'k, sothat A = Lz =1

2h4a
Note: we have six points in Crank Nicolson’s method in (6.5), that is

U1, »ui,j:ui+1,j»and Ui—1j+1Uij+1 and Uit1j+1
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These six points are shown in figure (4):

Ui—1,j+1 Ujj+1 Uit1,j+1
_____ O— 0 I
J G+ Dfrow
- O O -7\ th
Ui—1,j Uy j U1, G)Mrow

Figure: 4 Crane -Nicolson’s Scheme in(j)"*row and(j + 1)S'row
Note:
A convenient choice of 2 =1, it makes the Crane Nicolson’s scheme becomes simple, that is k =
ah?

Then we get modified form of Crane Nicolson’s Scheme is

1
Uij+1 =7 [im1jon +Wigrjan + gy + g ] — (6.6)
So that we will use this simplified formula subject to k = ah?, and also Crane Nicolson’s Scheme as
shown in figure (5):

Ui—1,j+1 Uij+1 Uit1,j+1 G+ 1 rowort)
B A Q

E D
Ui—15 Uity U rowost)
Figure: S Crane Nicolson’s Scheme

=The value of A =Average of the values at B,C,D and E
Note:

1. The Crank Nicolson’s scheme converges for all finite values of A.

2. Itis an implicit scheme because,

On the left side of system of linear equations (6.6) we have four unknowns and on the right
sides all the four quantities are known. Equation (6.6) which is an implicit scheme:

3. Ifthere are N internal mesh points on each row, then the CNS formula gives N simultaneous
equations for the Nunknowns in terms of the given boundary values.

4. Similarly, the internal mesh points on all rows can be calculated.

5. If there are N internal mesh points on each row, then formula (6.6) given N simultaneous
equations for the N unknowns in terms of the given boundary values. Similarly, the internal
mesh points on all rows can be calculated.

6. CNS likes BTCS and unconditional stable, even though BTCS and CNS have similar
procedure, but CNS scheme has a truncation error of O(Ax?) + O(At?), that is temporal

truncation error is significantly smaller than the temporal error of BTCS scheme.
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6.2. Example for CNS View:
Apply Crank — Nicolson method withh = 0.2 and A = 1 and find u(x, t), in the rod by considering
two time steps of the heat equationu,,, = u, satisfying the conditions

u(x,0) =sinmx and u(0,t) = 0 = u(t, t), and prepare table form as shown below

x — direction —

i 0 1 2 3 4 5
J 0 0.2 0.4 0.6 0.8 1.0
¢ 0 0.588 0.951 0.951 0.588 0 Rows
0 0 0 Uy Uy Us uy0 .
4 0 0.399 0.64 0.646 0.399 0 Row 1
t 0.2 0 Us Ug 6\11 ug0
0 0.271 0.439 0.439 0.2710 Row 2

6.3. Explanation of above table working:

First in the table,since u(x,0) = sinmx
. T o2
= u(0,0) = 0; u(0.2,0) = Sm§ = 0.5878 =~ 0.588; u(0.4,0) = sm? = 0.9511 ~ 0.951
. 3m _ 4m
= 1u(0.6,0) = sm? = 0.9511 ~ 0.951;u(0.8,0) = sm? = 0.578 ~ 0.588 and

5t
u(1,0) = sin? =0

Filling the place of in the value ofx — direction

Secondly, in the table we need

0+0.951+04u; U1+0.55840.951 +uj3 U2+0.951+0.588+1u4 U3+0.951+0+0
up = " Uy = 2 uz = 2 juy =————— by (6.6)

We simply solve in termsuy, u, u3 and uy, we get the following system of linear equations

1
u, = 0.23775 + Tl = 4 —uy = 0.951
1 1
uz = 7y +0.038475 + Z-uz = —uy + 4up —uz = 0.1539
1 1
Uz = Uz + 0.038475 + 2y = —up + 4uz —uy = 1539

1
Uy = ZU3 + 0.23775 = —Us + 4U4 = 0.951

So that we get the following system of linear equations in terms ofuy, u,, us, u4, they are
4dug — Uy = 0.951

—ug +4u; — ug = 0.1539 =(6.7)
— Uy +4uz — uy =1.1539
—  uz+4uy = 0951

Solve this system (6.7) (Note that this system has coefficient matrix is in tri — diagonal matrix form)

by any method (like as elimination, substitution and others) then we found that
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u; = 0.399,u, = 0.646,u3 = 0.646 and u, = 0.399, we can filled the first row elements in the

above table, similarly we will fill second row elements us, ug,u; and ug.
7. CONCLUSION
By the Fourier point of view we will get the result after long calculations, and its convergence is

depends upon continuity, boundedness and other conditions™™ *!, by FTM — Bender Schmidt method,
we will get the results after some more steps for the same given example, but explicit scheme has
convergence only limited in0 < A < % RBF also give the results near to exact solution but we need
number of 0(n®) + 20(n?)operations to get the solutions. ICT also needs more calculations and
number of iterations to reach near to exact solution and also the accuracy of numerical calculations
not only depend on the step sizes but also on the two parameters $; and $, But CNS, needs few steps
by solving system of linear equations depend up on number of unknownsu;, fori =1,2,...to find
the solutions of one — dimensional heat equations to reach near to exact solution needsonly
choosing A, properly,and also no need more calculations with short time, finally it convergence for
all values of A, and truncation error also significantly smaller than other approaches so that, from this

article we conclude that CNS is still as a major role to solve one — dimensional heat equation.
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