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Abstract: In this paper we discuss the equation that governs the conduction of heat through a body. 

We begin with the “Heat equation” (HE) in one – dimensional case in a bounded domain, by the 

Fourier’s Point of view,by numerical approach using Finite Differences Methods (FDM), Bender – 

Schmidt recurrence equation (BSRE), by the view ofRadial Function, andby Implicit Collocation 

Technique (ICT), finally theCrank Nicolson Schmidt (CNS) solving partial Differential equation (HE 

Only), by using an example and get the reasonably coincide approximate solution compare with exact 

solution and also we explain CNS is still useful like as a major role to solve HE. Discuss with 

numerical example for each methods. 

Keywords: One dimensional heat equation, Explicit Scheme, Implicit Scheme, Classification 

1. INTRODUCTION 

Partial differential equation (PDE) occurs in many branches of applied mathematics and Engineering 

mathematics. It appears in description of physical process, for example Hydrodynamics, 

elasticity,quantum mechanics, and electromagnetic theory etc. The solution of the equation describes 

possible physical reactions that have to be fixed through boundary conditions, which may be quite a 

different character. We shall confine ourselves to second order partial differential equations as the 

equations are found in the applications. First we classify the partial differential equations, which is in 

category of parabolic equation. 

1.1. Classification of the partial differential equations – Basic Concepts: 

The general linear partial differential equation in the second derivatives is of the form 

 

𝐴
𝜕2𝑢

𝜕𝑥 2 + 𝐵
𝜕2𝑢

𝜕𝑥𝜕𝑦
+ 𝐶

𝜕2𝑢

𝜕𝑦 2 + 𝐷
𝜕𝑢

𝜕𝑥
+ 𝐸

𝜕𝑢

𝜕𝑦
+ 𝐹𝑢 = 𝐺Or  

𝐴𝑢𝑥𝑥 + 𝐵𝑢𝑥𝑦 + 𝐶𝑢𝑦𝑦 + 𝐷𝑢𝑥 + 𝐸𝑢𝑦 + 𝐹𝑢 = 𝐺                  (1.1)

 𝑊𝑕𝑒𝑟𝑒 𝐴, 𝐵, 𝐶, 𝐷, 𝐸 𝑎𝑛𝑑 𝐹  𝑎𝑟𝑒 𝑎𝑙𝑙 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠 𝑜𝑓 𝑥 𝑎𝑛𝑑 𝑦 
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Note:  

For our convention in PDE we can denote, 

𝑝 =
𝜕𝑢

𝜕𝑥
; 𝑞 =

𝜕𝑢

𝜕𝑦
; 𝑟 =

𝜕2𝑢

𝜕𝑥2
; 𝑠 =

𝜕2𝑢

𝜕𝑥𝜕𝑦
; 𝑎𝑛𝑑𝑡 =

𝜕2𝑢

𝜕𝑦2
 

And also we have 

𝑑𝑢 =
𝜕𝑢

𝜕𝑥
𝑑𝑥 +

𝜕𝑢

𝜕𝑦
𝑦 

⟹ 𝑑𝑢 = 𝑝𝑑𝑥 + 𝑞𝑑𝑦 

𝑑𝑝 = 𝑑  
𝜕𝑢

𝜕𝑥
 =  

𝜕

𝜕𝑥
𝑑𝑥 +

𝜕

𝜕𝑦
𝑑𝑦 

𝜕𝑢

𝜕𝑥
=

𝜕2𝑢

𝜕𝑥2
𝑑𝑥 +

𝜕2𝑢

𝜕𝑦2
𝑑𝑦 = 𝑟𝑑𝑥 + 𝑠𝑑𝑦 

⟹ 𝑑𝑝 = 𝑟𝑑𝑥 + 𝑠𝑑𝑦, In this case let us take
𝜕2𝑢

𝜕𝑥𝜕𝑦
=

𝜕2𝑢

𝜕𝑦𝜕𝑥
 

Similarly𝑑𝑞 = 𝑠𝑑𝑥 + 𝑡𝑑𝑦 

Now the general linear equation in the second derivatives is of the form 

𝐴𝑟 + 𝐵𝑠 + 𝐶𝑡 + 𝐷𝑝 + 𝐸𝑞 + 𝐹𝑢 = 𝐺                   (1.2) 

 

Note: 

Equations (1.1) and (1.2) can be classified with respect to the sign of the discriminant. 

Since (1.1) and (1.2) have discriminant 

∆𝑠= 𝐵2 − 4𝐴𝐶                      (1.3) 

In the following manner: 

a. If∆𝑠< 0 , at the point in the 𝑥, 𝑦 - plane, the equation is called elliptic. 

b. If∆𝑠> 0 , at the point in the 𝑥, 𝑦 - plane, the equation is called hyperbola 

c. If∆𝑠= 0 , at the point in the 𝑥, 𝑦 - plane, the equation is calledparabola. 

Note: 

We can extend to the point 𝑥, 𝑦 in 𝑛- dimensional space also in the same way we classified. 

Our aim only considers HE that is parabolic equations. 

1.2. Parabolic Equation: 

As above discussion we easily conclude that, a partial differential equation in a region𝑅. If 

∆𝑠= 𝐵2 − 4𝐴𝐶 = 0, at all points of the region, the initial value of the function  𝑢  at time 𝑡 = 0 and 

the normal derivative
𝜕𝑢  𝑥,𝑡 

𝜕𝑡
 on the boundary are the required boundary conditions. In problem of this 

type, the solution is not defined in a closed domain as in the case of Laplace’s equation but is 

propagated in an open domain starting with prescribed conditions on an open boundary as shown in 

figure - 1 below: 
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Boundary conditions                Boundary Conditions 

Prescribed here       Prescribed here 

          Initial Conditions given here 

 

           Figure 1 

The one – dimensional heat – flow equation is
𝜕𝑢

𝜕𝑡
= 𝛼2 𝜕2𝑢

𝜕𝑥2  it is an important equation of the parabolic 

type. We will see this equation how do develop to solve in the following different points of view. 

2. FOURIER POINT OF VIEW 
[15]

 

In 
[15]

, Fourier considered variants of the following basic question. Let there be given an insulated, 

homogeneous rod of length𝜋with initial temperature at each 𝑥 ∈  0, 𝜋 given by a function  𝑓 𝑥  (Fig. 

-2) Assume that the endpoints are held in temperature 0, and that the temperature of each cross – 

section is constant. The problem is to describe the temperature  𝑢 𝑥, 𝑡 of the point𝑥in the rod at 

time  𝑡. Fourier preserved the fundamental importance of this problem as follows: 

 

 

            

            

            

        

 

Figure 2 

Primary causes are unknown to us; but are subject to simple and constant laws, which may be 

discovered by observation, the study of them being the object of natural philosophy. 

Heat, like gravity, penetrates every substance of the universe, its rays occupying all parts of space. 

The object of our work is to set forth the mathematical laws which this elementary obey the theory of 

heat will form of the most important branches of general physics. Let us now describe the manner in 

which Fourier solved his problem. First, it is required to write a differential equation that𝑢satisfies. 

We shall derive such an equation using three physical principles 

a. The density of heat energy is proportional to the temperature𝑢, hence the amount of heat 

energy in any interval 𝑎, 𝑏  of the rod is proportional to 𝑢 𝑥, 𝑡 
𝑏

𝑎
𝑑𝑥. 

b. Newton’s law of Cooling: The rate at which heat flows from a hot place to a cold one is 

proportional to the difference of the temperature. The infinite decimal version of this 

statement is that the rate of heat flow across a point𝑥from left to right is some negative 

constant times   𝜕𝑥𝑢 𝑥, 𝑡 . 

    𝑅
    
    
       Open Region 

0 

 Rod  

    𝜋 
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c. Conservation of Energy: Heat has no sources or sinks 

Now (c) tells us that the only way that heat can enter or leave any initial portion 𝑎, 𝑏 of the rod is 

through the end points. And (b) tells us exactly how this happens. Using (a), we may therefore write 

as 

𝑑

𝑑𝑡
 𝑢 𝑥, 𝑡 
𝑏

𝑎
𝑑𝑥 = 𝜂2 𝜕𝑥𝑢 𝑏, 𝑡 − 𝜕𝑥𝑢 𝑎, 𝑡    𝑤𝑕𝑒𝑟𝑒  𝜂2, it is a positive constant of proportionality. 

We may rewrite this equation 

 𝜕𝑡𝑢 𝑥, 𝑡 
𝑏

𝑎
𝑑𝑥 = 𝜂2  𝜕𝑥

2𝑏

𝑎
𝑢 𝑥, 𝑡 𝑑𝑥 , differentiating in  𝑏, we find that 

𝜕𝑡𝑢 = 𝜂2𝜕𝑥
2𝑢 , and that is the required HE. 

An English biologist J. B. S. Haldane (1892 – 1964) had this remark about the one – dimensional HE 

“In scientific thought we adopt the simplest theory which will explain all the facts under consideration 

and enable us to predict new facts of the same kind”. We can find such law as:  

𝛼2 𝜕2𝑤

𝜕𝑥2 =
𝜕𝑤

𝜕𝑡
                      (2.1) 

Assume that the constant of proportionality either   𝜂2𝑜𝑟  𝑎2equals 1. Fourier guessed the equation (1) 

has the solution of the form  𝑢 𝑥, 𝑡 = 𝛼 𝑥 𝛽 𝑡 , substituting the guess in (1) yields 

𝛼 𝑥 𝛽′ 𝑡 = 𝛼 ′′ 𝑥 𝛽 𝑡 𝑜𝑟
𝛼 𝑥 

𝛽 𝑡 
=

𝛼 ′′ 𝑥 

𝛽 ′ 𝑡 
       (2.2) 

Since the left hand side of (2.2) is independent of𝑥, and the right hand side of (2.2) is independent of𝑡 

⟹There is a constant𝐾, such that
𝛽 ′ 𝑡 

𝛽 𝑡 
= 𝐾 =

𝛼 ′′ 𝑥 

𝛼 𝑥 
  𝑜𝑟   

𝛽′ 𝑡 = 𝐾𝛽 𝑡 

𝛼 ′′ 𝑥 = 𝐾𝛼 𝑥 
  

We conclude that   𝛽 𝑡 = 𝐶𝑒𝐾𝑡 , the nature of  𝛽, and hence of  𝛼, thus depend on the sign of𝐾. But 

physical consideration tells us that the temperature will dissipate at times goes on, so we conclude 

that  𝐾 ≤ 0 

⟹ 𝛼 𝑥 = cos  −𝐾𝑥 𝑎𝑛𝑑𝛼 𝑥 = sin  −𝐾𝑥 , they are the solutions of the differential equation 

for  𝛼. The initial conditions  𝑢 0, 𝑡 = 𝑢 𝜋, 𝑡 = 0 

Since the ends of the rod are held at constant temperature  0, eliminate the first of these solutions and 

force  𝐾 = −𝑗2 , 𝑎𝑛𝑑  𝑗 as an integer. Thus Fourier found the solutions 

𝑢𝑗  𝑥, 𝑡 = 𝑒−𝑗
2𝑡 sin 𝑗𝑥 , 𝑓𝑜𝑟  𝑗 ∈ ℕ , of the heat equation 

By linearity, any finite combination 𝑏𝑗 𝑒
−𝑗 2𝑡 sin 𝑗𝑥 , of these solutions is also a solution. This 

assertion can also extend to infinite linear combinations. Using the initial condition  𝑢 𝑥, 0 = 𝑓 𝑥 , 

again raises the question of whether any 𝑓 𝑥  𝑜𝑛  0, 𝜋 , it can be written as a finite (infinite) linear 

combination of the function  sin 𝑗𝑥 

Fourier solution to this last question (of the function spanning essentially everything) is roughly as 

follows. Suppose that 𝑓, it is a function that is representable 
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𝑓 𝑥 =  𝑏𝑗𝑗  sin 𝑗𝑥                     (2.3) 

Setting  𝑥 = 0, it gives 𝑓 0 = 0 

Differentiating both sides of (2.3), and setting  𝑥 = 0, we have 

𝑓 ′ 0 =  𝑗𝑏𝑗
∞
𝑗=1  , successive differentiating  𝑘 times and evaluate at  0, we get 

𝑓 𝑘  0 =  
  −1 

𝑘

2𝑗𝑘𝑏𝑗

∞

𝑗=1

, 𝑓𝑜𝑟 𝑘 𝑖𝑠 𝑜𝑑𝑑 < 0

0, 𝑓𝑜𝑟 𝑘 𝑖𝑠 𝑒𝑣𝑒𝑛 ≥ 0

  

Thus Fourier devised the system of infinitely many equations in infinitely many unknowns 𝑏𝑗  . He 

proceeded to solve this system by truncating it to a   𝑁 × 𝑁 system (The first  𝑁 equations restricted to 

the first𝑁unknowns), solved that truncated system and let  𝑁 ⟶ ∞. Suffice to say that Fourier’s 

arguments contained many dubious steps 
[15, 17]

 

The upshot of Fourier’s intricate and lengthy calculations was that 

𝑏𝑗 =
2

𝜋
 𝑓 𝑥 
𝜋

0
 sin 𝑗𝑥 𝑑𝑥                    (2.4) 

By modern standards, Fourier’s reasoning was specious; for he began by assuming that𝑓 possessed an 

expansion in terms of sine functions. The formula (2.4) hinges on that supposition, together with steps 

in which one compensated division by zero with a later division∞. Nevertheless, Fourier’s methods 

give an actual procedure for endeavoring to expand any given  𝑓, in a series of sine functions, for 

example: 

2.1. Example for Fourier’s view of H E1: 

“Suppose that the rod in the setup of the HE is first immersed in boiling water so that its temperature 

uniformly 90°C. Then imagine that it is removed from the water at time    𝑡 = 0  with its ends 

immediately put into ice so that these ends are kept at temperature 0°C. Find the temperature  𝑢 =

𝑢 𝑥, 𝑡  under these circumstances. 

The initial temperature distribution is given by the constant function   𝑓 𝑥 = 90; 𝑓𝑜𝑟  0 < 𝑥 < 𝜋 

The boundary conditions and other initial conditions are as usual. Thus our aim is to find the sine 

series expansion of this function  𝑓, note that   𝑏𝑗 = 0, when𝑗, it is even. For𝑗, it is odd we calculate 

that 

𝑏𝑗 =
2

𝜋
 90
𝜋

0
 sin 𝑗𝑥 𝑑𝑥 = −

2×90

𝜋
 

cos 𝑗𝑥

𝑗
 

0

𝜋
=

360

𝜋𝑗
 , as long as  𝑗, it is odd 

⟹ 𝑓 𝑥 =
360

𝜋𝑗
 𝑒−𝑡 sin 𝑥 +

1

3
𝑒−9𝑡 sin 3𝑥 +

1

5
𝑒−25𝑡 sin 5𝑥 + ⋯  

Now, referring to (2.3), and the preceding discussion from our general discussion of HE, we get 

𝑢 𝑥, 𝑡 =
360

𝜋𝑗
 𝑒−𝑡 sin 𝑥 +

1

3
𝑒−9𝑡 sin 3𝑥 +

1

5
𝑒−25𝑡 sin 5𝑥 + ⋯  
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2.2. Example for Fourier’s view of H E 2 

Find the Fourier series expansion of period  2𝜋, for the function𝑓 𝑥 = sin𝜋𝑥𝑖𝑛 − 𝜋 < 𝑥 < 𝜋 

Solution: 

Since𝑓 𝑥 = sin𝜋𝑥𝑖𝑛 − 𝜋 < 𝑥 < 𝜋 

⇒  𝑓 𝑥 , it is an odd function then Fourier expansion of𝑓 𝑥 , contains only sine terms 

⇒ 𝑓 𝑥 =  𝑏𝑛 sin𝑛𝑥

∞

𝑛=1

,𝑊𝑕𝑒𝑟𝑒  𝑏𝑛 =
2

𝜋
 𝑓 𝑥 sin𝑛𝑥

𝜋

0

𝑑𝑥 

Sincesin𝜋𝑥 sin𝑛𝑥 =
1

2
 cos 𝑛 − 𝜋 𝑥 − cos 𝑛 + 𝜋 𝑥  

⇒ 𝑏𝑛 =
2

𝜋
 

1

2
 cos 𝑛 − 𝜋 𝑥 − cos 𝑛 + 𝜋 𝑥 

𝜋

0

𝑑𝑥 

⇒ 𝑏𝑛 =
1

𝜋
  cos 𝑛 − 𝜋 𝑥 − cos 𝑛 + 𝜋 𝑥 

𝜋

0

𝑑𝑥 

⇒ 𝑏𝑛 =
1

𝜋
 
 sin 𝑛 − 𝜋 𝑥 

𝑛 − 𝜋
−
 sin 𝑛 + 𝜋 𝑥 

𝑛 + 𝜋
 

0

𝜋

 

Sincesin 0 = 0 ⇒ 𝑏𝑛 =
1

𝜋
 
 sin  𝑛−𝜋 𝜋 

𝑛−𝜋
−

 sin  𝑛+𝜋 𝜋 

𝑛+𝜋
 =

1

𝜋
 
 sin  𝑛𝜋−𝜋2  

𝑛−𝜋
−

 sin  𝑛𝜋+𝜋2  

𝑛+𝜋
  

⇒ 𝑏𝑛 =
1

𝜋
 
 sin𝑛𝜋𝑐𝑜𝑠 𝜋2 − 𝑠𝑖𝑛𝜋2 cos 𝑛𝜋 

𝑛 − 𝜋
−
 sin𝑛𝜋𝑐𝑜𝑠 𝜋2 + 𝑐𝑜𝑠𝑛𝜋 sin𝜋2 

𝑛 + 𝜋
  

Sincesin𝑛𝜋 = 0 ⇒ 𝑏𝑛 =
1

𝜋
 
 −sin 𝜋2 cos 𝑛𝜋  

𝑛−𝜋
−

 𝑠𝑖𝑛𝜋2 cos 𝑛𝜋  

𝑛+𝜋
  

Sincecos𝑛𝜋 =  −1 𝑛  𝑎𝑛𝑑 𝑎𝑙𝑠𝑜 𝑠𝑖𝑛𝜋2 ≠ 0, 𝑏𝑒𝑐𝑎𝑢𝑠𝑒 𝜋 , it is neither 0 nor an integer 

⇒ 𝑏𝑛 =
1

𝜋
 
  −𝑠𝑖𝑛𝜋2  −1 𝑛 

𝑛 − 𝜋
−
 𝑠𝑖𝑛𝜋2  −1 𝑛

𝑛 + 𝜋
  

⇒ 𝑏𝑛 =
 −1 𝑛+1𝑠𝑖𝑛𝜋2

𝜋
 

1

𝑛 − 𝜋
+

1

𝑛 + 𝜋
 =

 −1 𝑛+1𝑠𝑖𝑛𝜋2

𝜋
 
𝑛 + 𝑎 + 𝑛 − 𝑎

𝑛2 − 𝜋2  

=
 −1 𝑛+1𝑠𝑖𝑛𝜋2

𝜋
 

2𝑛

𝑛2 − 𝜋2  

⇒ 𝑏𝑛 =  −1 𝑛+1
2𝑛𝑠𝑖𝑛𝜋2

𝜋 𝑛2 − 𝜋2 
 

⇒ 𝑓 𝑥 =  𝑏𝑛 sin 𝑛𝑥

∞

𝑛=1

=    −1 𝑛+1
2𝑛𝑠𝑖𝑛𝜋𝑎

𝜋 𝑛2 − 𝜋2 
 sin𝑛𝑥

∞

𝑛=1

 

⇒ 𝑓 𝑥 =
2 sin𝑎𝜋

𝜋
  

𝑛 −1 𝑛+1

 𝑛2 − 𝜋2 
 sin𝑛𝑥

∞

𝑛=1

 

⇒ sin𝜋𝑥 =
2 sin𝜋2

𝜋
  

𝑛 −1 𝑛+1

 𝑛2 − 𝜋2 
 sin 𝑛𝑥

∞

𝑛=1

 

We conclude that Fourier point of view, we need lengthy calculations.  
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3. NUMERICAL VIEW OF FINITE DIFFERENCE METHOD (FDM) 

Sometimes solving partial differential equation by ordinary methods is very difficult and laborious. So 

we go in for numerical methods of solving partial differential equations, the method of finite 

differences is most commonly used, in this method the partial differential coefficients is replaced by 

their finite difference approximations. 

3.1. Solution of Parabolic Equation by FDM 

We know that the one dimensional heat equation is 

𝜕𝑢

𝜕𝑡
= 𝛼2

𝜕2𝑢

𝜕2𝑥 
  𝑤𝑕𝑒𝑟𝑒  𝛼2 =

𝑘

𝑒𝜌
 

Here  𝑒 is the specific heat of the material,  𝜌 is the density and  𝑘  is the thermal conductivity. 

The above heat equation can be written as 

𝜕2𝑢

𝜕2𝑥
=

1

𝛼2

𝜕𝑢

𝜕𝑡
⟹ 𝑢𝑥𝑥 =

1

𝛼2
𝑢𝑡 = 𝑎𝑢𝑡 , 𝑤𝑕𝑒𝑟𝑒  𝑎 =

1

𝛼2
⟹ 𝑢𝑥𝑥 − 𝑎𝑢𝑡 = 0 

Note that  𝐴 = 1, 𝐵 = 0, 𝐶 = 0, 𝑡𝑕𝑒𝑛𝐵2 − 4𝐴𝐶 = 0, 𝑠𝑜 𝑡𝑕𝑎𝑡  𝑡𝑕𝑖𝑠  𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛  𝑖𝑠  𝑝𝑎𝑟𝑎𝑏𝑜𝑙𝑖𝑐  

Let us solve by the method of finite differences the equation 

𝑢𝑥𝑥 = 𝑎𝑢𝑡                       (3.1) 

With the boundary conditions, 

𝑢 0, 𝑡 = 𝑇0            

𝑢 𝑙, 𝑡 = 𝑇1                      (3.2) 

And the initial conditions 

𝑢 𝑥, 0 = 𝑓(𝑥)                      (3.3) 

We select spacing  𝑕  for the variable  𝑥  and spacing   𝑘 in the time direction 

We know that 

𝑢𝑥𝑥 =
𝑢𝑖−1,𝑗 − 2𝑢𝑖,𝑗 + 𝑢𝑖+1,𝑗

𝑕2
𝑎𝑛𝑑𝑢𝑡 =

𝑢𝑖,𝑗+1 − 𝑢𝑖,𝑗

𝑘
 

Equation (3.1) becomes 

𝑢 𝑖−1,𝑗−2𝑢𝑖,𝑗+𝑢 𝑖+1,𝑗

𝑕2 = 𝑎  
𝑢 𝑖,𝑗+1−𝑢𝑖,𝑗

𝑘
 . That is, 

𝑢𝑖,𝑗+1 − 𝑢𝑖,𝑗 =
𝑘

𝑕2𝑎
 𝑢𝑖−1,𝑗 − 2𝑢𝑖,𝑗 + 𝑢𝑖+1,𝑗  = 𝜆 𝑢𝑖−1,𝑗 − 2𝑢𝑖,𝑗 + 𝑢𝑖+1,𝑗  , 𝑤𝑕𝑒𝑟𝑒  𝜆 =

𝑘

𝑕2𝑎
 

It is called two levels formula because it is a relation between the function values at two levels 

Or we have 

𝑢𝑖,𝑗+1 = 𝜆𝑢𝑖+1,𝑗 +  1 − 2𝜆 𝑢𝑖,𝑗 + 𝜆𝑢𝑖−1,𝑗                           (3.4) 

It is called Explicit formula it valid if   0 < 𝜆 ≤
1

2
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The boundary conditions (3.2) can be put in difference form as 

𝑢0,𝑗 = 𝑇0           

𝑢𝑛,𝑗 = 𝑇1    𝑓𝑜𝑟 𝑗 = 1, 2, …                    (3.5) 

Note that here𝑛𝑕 = 𝑙 

The initial condition (3.3) is  

𝑢𝑖,0 = 𝑓 𝑖𝑕   𝑓𝑜𝑟  𝑖 = 1, 2, …                    (3.6) 

Equation (3.4) gives the value of 

𝑢  𝑎𝑡  𝑥 = 𝑖𝑕, 𝑎𝑡  𝑡𝑖𝑚𝑒   𝑡𝑗 + 𝑘  interms 𝑜𝑓 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓  𝑢  𝑎𝑡  𝑥 =  𝑖 − 1 𝑕, 𝑖𝑕 

𝑎𝑛𝑑 𝑥 =  𝑖 + 1 𝑕, 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡𝑗  

Since  𝑢 𝑥, 0 = 𝑓 𝑥 ,   𝑢  𝑖𝑠  𝑘𝑛𝑜𝑤𝑛  𝑎𝑡  𝑡 = 0 

So the recurrence equation (3.4)  

Allows the evaluation of  𝑢  𝑎𝑡  𝑒𝑎𝑐𝑕  𝑝𝑖𝑣𝑜𝑡𝑎𝑙  𝑝𝑜𝑖𝑛𝑡  𝑥𝑖  𝑎𝑡  𝑎𝑛𝑦  𝑡𝑖𝑚𝑒 𝑡𝑗  

Equation (3.4) becomes particularly simple, if for a given 

𝑕, 𝑘  𝑖𝑠 𝑠𝑜  𝑐𝑕𝑜𝑠𝑒𝑛  𝑡𝑕𝑎𝑡  𝑡𝑕𝑒  𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡  𝑜𝑓  𝑢𝑖,𝑗   𝑣𝑎𝑛𝑖𝑠𝑕𝑒𝑠. That is, 

1 − 2𝜆 = 0 ⟹ 𝜆 =
1

2
 , that is

𝑘

𝑕2𝑎
=

1

2
  𝑜𝑟  𝑘 =

𝑕2𝑎

2
. In this case (3.4) becomes 

𝑢𝑖,𝑗+1 =
1

2
 𝑢𝑖+1,𝑗 + 𝑢𝑖−1,𝑗                          (3.7) 

That is the value of  𝑢  𝑎𝑡  𝑥 = 𝑥𝑖  

𝑎𝑡  𝑡𝑖𝑚𝑒  𝑡𝑗+1  𝑖𝑠  𝑒𝑞𝑢𝑎𝑙  𝑡𝑜  𝑡𝑕𝑒  𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑜𝑓 𝑡𝑕𝑒  𝑣𝑎𝑙𝑢𝑒𝑠  𝑜𝑓  𝑢  𝑎𝑡  𝑡𝑕𝑒 

𝑠𝑢𝑟𝑟𝑜𝑢𝑛𝑑𝑖𝑛𝑔  𝑝𝑜𝑖𝑛𝑡𝑠  𝑥𝑖+1  𝑎𝑛𝑑  𝑥𝑖−1  at  𝑡𝑕𝑒  𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠  𝑡𝑖𝑚𝑒  𝑡𝑗   𝑡𝑕𝑖𝑠  𝑖𝑠  𝑠𝑕𝑜𝑤𝑛  𝑖𝑛  𝑓𝑖𝑔𝑢𝑟𝑒: 3 

This method is called the Bender - Schmidt recurrence equation 

     𝑢𝑖,𝑗+1 

            A 

 

            

            

                B       C     

    𝑢𝑖−1,𝑗  𝑢𝑗 ,𝑗   𝑢𝑖+1,𝑗      

  
  Figure 3 Schematic diagrams for Bender - Schmidt recurrence equation 

⟹The value of 𝐴 =Average of the values at  𝐵 𝑎𝑛𝑑 𝐶 =
1

2
 𝐵 + 𝐶  

Note that the solution obtained by using Bender Schmidt recurrence equation is stable when 

𝜆 ≤
1

2
, otherwise the solution is unstable and also the solution level at any point 

 𝑖, 𝑗 + 1 , on the  𝑗 + 1 𝑡𝑕 level it is expressed in terms of the solution value at the points 

 𝑖 − 1, 𝑗 ,  𝑖, 𝑗  𝑎𝑛𝑑  𝑖 + 1, 𝑗  𝑜𝑛 𝑡𝑕𝑒 𝑗𝑡𝑕 𝑙𝑒𝑣𝑒𝑙 , such a method is called explicit formula, so that 

Bender Schmidt recurrence equation is the explicit formula. 
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3.2. Example of Finite difference Bender – Schmidt Recurrence equation View: 

Solve  𝑢𝑥𝑥 = 𝑢𝑡subject to 

𝑢 0, 𝑡 = 0 = 𝑢 1, 𝑡  𝑎𝑛𝑑 𝑢 𝑥, 0 = sin𝜋𝑥,   𝑓𝑜𝑟 0 < 𝑥 < 1 

Since 𝑕 𝑎𝑛𝑑 𝑘, they are not given we will select them properly and use Bender – Schmidt method. 

Since 

𝑘 =
𝑎

2
𝑕2 =

1

2
𝑕2 𝑠𝑖𝑛𝑐𝑒 𝑎 = 1, and the range of 𝑥 𝑖𝑠  0, 1 , and take 𝑕 = 0.2 

⟹ 𝑘 =
 0.2 2

2
= 0.02 

Since the formula is𝑢𝑖,𝑗+1 =
1  

2
 𝑢𝑖−1,𝑗 + 𝑢𝑖+1,𝑗   by (3.7)       

And also 𝑢 0, 0 = 0, 𝑢 0.2, 0 = sin
𝜋

5
= 0.5875;  𝑢 0.4, 0 = sin

2𝜋

5
= 0.9511; 

𝑢 0.6, 0 = sin
3𝜋

5
= 0.9511; 𝑢 0.8, 0 = sin

4𝜋

5
= 0.5875;  𝑎𝑛𝑑 sin 1, 0 = 0,  

 

We can form the table as following manner: 

 

    𝒙 − 𝒅𝒊𝒓𝒆𝒄𝒕𝒊𝒐𝒏  ⟶ 

𝑖 
𝑗
  

0 1 2 3 4 5  
𝑅𝑜𝑤𝑠 0 0.2 0.4 0.6 0.8 1.0 

0 
 

1 
 

2 
 

3 
 

4 
 

5 

0 
 

0.02 
 

0.04 
 

0.06 
 

0.08 
 

0.1 

0 0.5875 0.9511 0.9511 0.5875 0 
 

0 0.4756 0.7695 0.7695 0.4756 0 
 

0 0.3848 0.6225 0.6225 0.3848 0 
 

0 0.3113 0.5306 0.5306 0.3113 0 
 

0 0.2511 0.4074 0.4074 0.2511 0 
 

0 0.2037 0.3296 0.3296 0.2037 0 

𝑅𝑜𝑤 1 
 

𝑅𝑜𝑤 2 
 

𝑅𝑜𝑤 3 
 

𝑅𝑜𝑤 4 
 

𝑅𝑜𝑤 5 
 

𝑅𝑜𝑤 6 

 

Explanation of the table working: 

In the table by using formula (3.7) putting 𝑗 = 0, we get𝑢𝑖,1 =
1  

2
 𝑢𝑖−1,0 + 𝑢𝑖+1,0              (3.8) 

Putting 𝑖 = 1, in (3.8) we get, 𝑢1,1 =
1  

2
 𝑢0,0 + 𝑢2,0 =  

0+0.9511

2
 = 0.4756 

Putting 𝑖 = 2, in (3.8) we get, 𝑢2,1 =
1  

2
 𝑢1,0 + 𝑢3,0 =  

0.5875+0.9511

2
 = 0.7695 

Putting 𝑖 = 3, in (3.8) we get, 𝑢3,1 =
1  

2
 𝑢2,0 + 𝑢4,0 =  

0.9511+0.5875

2
 = 0.7695 

Putting 𝑖 = 4, in (3.8) we get, 𝑢4,1 =
1  

2
 𝑢3,0 + 𝑢5,0 =  

0.9511+0

2
 = 0.4756 

In the above table second row is filled, similarly putting 𝑗 = 1, 2, 3,4 𝑎𝑛𝑑 5, the other rows are filled 

 

𝒕 
↓ 
𝒅 
𝒊 
𝒓 
𝒆 
𝒄 
𝒕 
𝒊 
𝒐 
𝒏 
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Note: 

Suppose assuming 𝑕 = 𝑘=1,in this case 𝜆 =
𝑘

𝑎𝑕2 = 1, it violets the condition of for use of Explicit 

formula, and the solution is not stable, it is not a practical problem, since unstable solutions don’t 

exist. 

4. RADIAL BASIS FUNCTIONS VIEW (RBF) 
[1, 8, 9, 10]

 

Interpolation of a given set of points is an important problem especially in higher – dimensional 

domains. Even though polynomials is an important tool for interpolating a given set of points in one 

dimension, the use of these functions leads to difficulties in higher – dimensional domains. When we 

employed these functions, the arrangement of points in the domain of the problem which must have a 

certain form, however, this limits us when interpolation of a scattered set of points is needed. RBF are 

most efficient instruments for interpolating a scattered set of points which have been used in the last 

few years. 

RBF methods have been introduced for interpolation of scattered data. Some well – known RBFs are 

listed below in table 1. 

Table 1: Some Radial Basis Functions 

Name of Function Definition 

Gaussian (GA) 𝜓 𝑡 = exp −𝑐𝑟2  

Hardy Multi quadric(MQ) 𝜓 𝑡 =  𝑟2 + 𝑐2 

Inverse Multi quadric(IMQ) 
𝜓 𝑡 =   𝑟2 + 𝑐2 

−1
 

Inverse quadric(IQ) 𝜓 𝑡 =  𝑟2 + 𝑐2 −1 

 

Note: 

In the above table   𝑟 =  𝑥1 − 𝑥 2, all functions are globally supported, infinitely differentiable, and 

depend on a free parameter   𝑐. 

4.1. Property – Globally Supported Radial Functions
[21]

: 

Let  𝑟, it is the Euclidean distance between𝑥1 ∈ ℝ𝑑 , and any 𝑥 ∈ ℝ𝑑 , and then 𝑟 =  𝑥1 − 𝑥 2.  

A radial function𝜓1 = 𝜓  𝑥1 − 𝑥 2 , depends only on the distance between   𝑥 ∈ ℝ𝑑   𝑎𝑛𝑑 𝑥1 ∈ ℝ𝑑  

This property gives us the radial function𝜓1, they are radially symmetric about 𝑥1, and then, it is clear 

that the functions in above table: 1 is supported, infinitely differentiable, and depends on a free 

parameter 𝑐 

Now, let us take𝑥1 , … , 𝑥𝑁 , it is a given set of distinct points inℝ𝑑 . The concept behind the use of 

RBFs is interpolation with the linear combination of RBFs of the same types as follows: 
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𝐹 𝑥 =  𝜆𝑖
𝑛
𝑖=1 𝜓𝑖 𝑥                      (4.1) 

Where𝜓𝑖 𝑥 = 𝜓  𝑥 − 𝑥𝑖    𝑎𝑛𝑑 𝜆𝑖, they are known scalars for 𝑖 = 1,… , 𝑁.  

The unknown scalars    𝜆𝑖 , they are chosen, so that  𝐹 𝑥𝑗  = 𝑓𝑗 , 𝑓𝑜𝑟 𝑗 = 1,… ,𝑁 , it results in the 

following linear system of equations: 

𝑨𝒚 = 𝒇                       (4.2) 

Where     𝑨𝑖,𝑗 = 𝜓𝑖 𝑥𝑗  ; 𝒚 =  𝜆1 , … , 𝜆𝑁   𝑎𝑛𝑑 𝒇 =  𝑓1, … , 𝑓𝑁  

By the property of globally supported RBFs, we choose 𝜓 global support, this method produces a 

dense matrix𝑨, by Schoenberg’s theorem 
[18a]𝑨it is to be positive definite and therefore non – singular, 

for the distinct interpolation points for GA, IMQ and IQ, again by the Micchelli theorem 
[18a]

 matrix𝑨 

it is invertible for distinct set of scattered set of points in the case of MQ. Even though matrix𝑨 

It is non – singular, usually it is mostly ill – conditioned  ⟹  the condition number of𝑨, it is 

𝜅𝑙 𝑨 =  𝑨 𝑙 𝑨 𝑙
−1, 𝑓𝑜𝑟 𝑙 = 1, 2, …                   (4.3) 

It is a too large number⟹a small perturbation in the initial data may produce large amount of 

perturbation in the solution ⟹  use more precise arithmetic’s than the standard floating point 

arithmetic in this method’s computation. For a fixed number of interpolation points, the condition 

number of 𝑨 depends on the shape parameter  𝑐, support of the RBFs and the separation distance of 

interpolation points. Also, the condition number grows with  𝑁 for fixed values of the shape of the 

parameter  𝑐. In practice, the shape parameter must be adjusted with the number of interpolating 

points in order to produce an interpolating matrix which is well conditioned enough to be inverted in 

finite precision arithmetic 
[19a]

. Despite various research works which are done to develop algorithms 

for selecting the values of  𝑐, which produce most accurate interpolation (e.g. see 
[6, 19]

), the optimal 

choice of shape parameter still as an open problem. 

4.2. Method of Solution for One – Dimensional Problem: 

Consider  𝐿𝑢 𝑥, 𝑡 = 𝑞 𝑥, 𝑡 , 𝑓𝑜𝑟  𝑥, 𝑡 ∈  𝑎, 𝑏 ×   0, 𝑇                   (4.4) 

Where 𝑎, 𝑏 ⊂ ℝ, it is an open special interval and 𝐿 it is a second – order linear parabolic operator, 

with the following initial and boundary conditions: 

𝑢 𝑥, 0 = 𝑓 𝑥   𝑓𝑜𝑟 𝑥 ∈  𝑎, 𝑏                    (4.5) 

𝑢 𝑎, 𝑡 = 𝑔1 𝑡   𝑓𝑜𝑟  𝑡 ∈   0, 𝑇                      (4.6) 

𝑢 𝑏, 𝑡 = 𝑔2 𝑡   𝑓𝑜𝑟  𝑡 ∈   0, 𝑇                      (4.7) 

First, the domainΩ =  𝑎, 𝑏 ×   0, 𝑇  , it is decomposed as 

Ω =  Ω𝑖
s
i=1                      (4.8) 
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WhereΩ𝑖 =  𝑎, 𝑏 ×   𝑖 − 1 𝑇1 , 𝑖𝑇1 , for a sufficiently small value of𝑇1 =
𝑇

𝑠
 𝑎𝑛𝑑 𝑠, it is a positive 

integer. We solve the problem in equations (4.4) to (4.7), in each sub domain Ω𝑖  using the collocation 

technique, the sub domains are  Ω1 , Ω2¸ … , Ω𝑖 , …Ω𝑠 . For solving (4.4) to (4.7) in Ω1, let 

𝜒1 =   𝑥𝑖 , 𝑡𝑖  𝑖=1
𝑁 ⊂  Ω1                   (4.9) 

It is a set of scattered nodes. Using the radial basis collocation method, the solution of the problem 

in 𝑎, 𝑏 ×  0, 𝑇1 , it is𝑢 1 =  𝛼1𝑖
𝑁
𝑖=1 𝜓𝑖 𝑥, 𝑡                 (4.10) 

Where   𝜓𝑖 𝑥, 𝑡 = 𝜓   𝑥, 𝑡 −  𝑥𝑖 , 𝑡𝑖   , for a given radial function 𝜓  𝑎𝑛𝑑 𝛼1𝑖 , 𝑓𝑜𝑟 𝑖 = 1,… ,𝑁 

They are unknown. In fact RBFs are used for discretization of both time and space variables in 

 𝑎, 𝑏 ×  0, 𝑇1 . Now, by the collocation approach, impose the approximate solution𝑢 1 to satisfy the 

given differential equation with initial and boundary conditions at 𝑥𝑖 , 𝑡𝑖 , 𝑓𝑜𝑟 𝑖 = 1,… ,𝑁 

⟹We have 

 𝐿𝑢 1 𝑥𝑖 , 𝑡𝑖 = 𝑞 𝑥𝑖 , 𝑡𝑖 , 𝑓𝑜𝑟  𝑥𝑖 , 𝑡𝑖 ∈  𝑎, 𝑏 ×   0, 𝑇1                 (4.11) 

𝑢 1 𝑥𝑖 , 𝑡𝑖 = 𝑓 𝑥𝑖   𝑓𝑜𝑟  𝑥𝑖 , 𝑡𝑖 ∈  𝑎, 𝑏 ×  0                 (4.12) 

𝑢 1 𝑥𝑖 , 𝑡𝑖 = 𝑔1 𝑡𝑖   𝑓𝑜𝑟   𝑥𝑖 , 𝑡𝑖 ∈  𝑎 ×   0, 𝑇1                  (4.13) 

𝑢 1 𝑥𝑖 , 𝑡𝑖 = 𝑔2 𝑡𝑖   𝑓𝑜𝑟   𝑥𝑖 , 𝑡𝑖 ∈  𝑏 ×   0, 𝑇1                  (4.14) 

Those result in a linear system of equations 

𝑨𝛼1 = 𝒃𝟏                    (4.15) 

By solving this system of linear equations (4.15), unknown values are𝛼1𝑖 , 𝑓𝑜𝑟 𝑖 = 1,… ,𝑁,  

They can be found. Generally, the obtained linear system is ill – conditioned. Here 𝑨, it is  𝑁 × 𝑁 

matrix. If   𝑇1, it is chosen such that a small number of the collocation points provide an accurate 

approximation in 𝑎, 𝑏 ×  0, 𝑇1 ;𝑨it will be a low – dimensional matrix 

⟹ Finding Permutation Lower Upper triangular decomposition (PLU) of 𝑨, 

⟹ We have 𝑷𝑳𝑼(𝑨)𝛼1 = 𝒃𝟏                  (4.16) 

Where𝑳 =  𝑙𝑖𝑗   𝑎𝑛𝑑 𝑼 =  𝑢𝑖𝑗  , respectively with𝑙𝑖𝑖 = 1  𝑓𝑜𝑟 𝑖 = 1,… , 𝑁 

Note that this factorization needs 𝒪 𝑛3 , number of operations, and also𝑷 = 𝑷−𝟏 , since𝑷, it is a 

permutation matrix 

⟹ 𝑳𝑼 𝑨 𝛼1 = 𝑷𝒃𝟏                   (4.17) 

Again using the forward substitution with 𝒪 𝑛2 , number of operations we solve 

𝑳𝒚1 = 𝑷𝒃𝟏                    (4.18) 

Then, find𝛼1 , by solving𝑼𝛼1 = 𝒚1 , then using backward substitution it needs 𝒪 𝑛2 , number of 

operations, consider the following problem in   Ω2 =  𝑎, 𝑏 ×  𝑇1 , 2𝑇1 , it looked as 

 𝐿𝑢 𝑥𝑖 , 𝑡𝑖 + 𝑇1 =  𝑥𝑖 , 𝑡𝑖 + 𝑇1 , 𝑓𝑜𝑟  𝑥𝑖 , 𝑡𝑖 + 𝑇1 ∈  𝑎, 𝑏 ×   𝑇1 , 2𝑇1               (4.19) 

𝑢 𝑥, 0 = 𝑢  𝑥, 𝑇1   𝑓𝑜𝑟  𝑥𝑖 , 𝑡𝑖 ∈  𝑎, 𝑏 ×  𝑇1                 (4.20) 
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𝑢 𝑎, 𝑡 = 𝑔1 𝑡   𝑓𝑜𝑟  𝑥, 𝑡 ∈  𝑎 ×   𝑇1 , 𝑇                  (4.21) 

𝑢 𝑏, 𝑡 = 𝑔2 𝑡   𝑓𝑜𝑟  𝑥, 𝑡 ∈  𝑏 ×   𝑇1 , 𝑇                  (4.22) 

Set 𝜒2 =   𝑥𝑖 , 𝑡𝑖 + 𝑇1 | 𝑥𝑖 , 𝑡𝑖 ∈ 𝜒1 , 𝑓𝑜𝑟 𝑖 = 1,…𝑁 , as the set of collocation points in  𝑎, 𝑏 ×

 𝑇1 , 2𝑇1 . Using the RBFs method the solution of the problemin 𝑎, 𝑏 ×  𝑇1 , 2𝑇1  is  

𝑢 2 =  𝛼2𝑖
𝑁
𝑖=1 𝜓𝑖 𝑥, 𝑡                    (4.23) 

⟹We have 

 𝐿𝑢 𝑥𝑖 , 𝑡𝑖 + 𝑇1 = 𝑞 𝑥𝑖 , 𝑡𝑖 + 𝑇1 , 𝑓𝑜𝑟  𝑥𝑖 , 𝑡𝑖 + 𝑇1 ∈  𝑎, 𝑏 ×   𝑇1 , 2𝑇1               (4.24) 

𝑢 𝑥𝑖 , 𝑡𝑖 + 𝑇1 = 𝑢  𝑥𝑖,𝑇1   𝑓𝑜𝑟  𝑥𝑖 , 𝑡𝑖 ∈  𝑎, 𝑏 ×  𝑇1               (4.25) 

𝑢 𝑥𝑖 , 𝑡𝑖 + 𝑇1 = 𝑔1 𝑡𝑖 + 𝑇1   𝑓𝑜𝑟   𝑥𝑖 , 𝑡𝑖 ∈  𝑎 ×   𝑇1 , 2𝑇1                            (4.26) 

𝑢 𝑥𝑖 , 𝑡𝑖 + 𝑇1 = 𝑔2 𝑡𝑖 + 𝑇1 𝑓𝑜𝑟   𝑥𝑖 , 𝑡𝑖 ∈  𝑏 ×   𝑇1 , 2𝑇1                (4.27) 

Those result in a linear system of equations 

𝑨𝛼2 = 𝒃𝟐                    (4.28) 

Since𝑢 2, it is the linear combination of radial functions, and then same coefficient matrix be obtained. 

This property obtained from the fact that the value of a radial function is 

𝜓∗ 𝑥, 𝑡 = 𝜓   𝑥, 𝑡 −  𝑥∗, 𝑡∗  2  , depends only   𝑥, 𝑡 −  𝑥∗, 𝑡∗  2 , not the 

points 𝑥, 𝑡  𝑎𝑛𝑑  𝑥∗, 𝑡∗  

⟹The unknown vector 𝛼2, it is obtained from 𝑳𝒚2 = 𝑷𝒃𝟐  𝑎𝑛𝑑 𝑼𝛼2 = 𝒚2             (4.29) 

In (4.29) we used only 𝒪 𝑛2 , number of operations, we can precede remaining iterations, with choice 

of points in Ω𝑘 =  𝑎, 𝑏 ×   𝑘 − 1 𝑇1 , 𝑘𝑇1  𝑡𝑕𝑒𝑛 𝜒𝑘 =  𝑥𝑖 , 𝑡𝑖 +  𝑘 − 1 𝑇1   𝑓𝑜𝑟 𝑘 = 1,… 𝑠,  

Finally we get𝑳𝒚𝑘 = 𝑷𝒃𝒌  𝑎𝑛𝑑 𝑼𝛼𝑘 = 𝒚𝑘  𝑓𝑜𝑟 𝑘 = 2, 3, … 

It yields the approximate solution of the problemΩ𝑘 ⟹the approximate solution is obtained in 

 𝑎, 𝑏 ×   0, 𝑇 =  Ω𝑖
s
i=1  , only by LU - factorization of a low – dimensional matrix 𝑨 

In fact, in each sub – domain, the coefficient matrix of the resulted linear system which can be 

obtained from the discretization of the problem is same, therefore, in each sub – domain only the right 

hand side vector needs to be found. 

4.3. Example for RBF’s View in one dimensional case
[20]:

 

Consider the heat equation  𝑢𝑥𝑥 = 𝑢𝑡 , 𝑓𝑜𝑟 𝑜 < 𝑥 < 1 𝑎𝑛𝑑 0 < 𝑡 ≤ 𝑇 subject to 

 𝑢 0, 𝑡 = 0 = 𝑢 1, 𝑡  𝑓𝑜𝑟 0 < 𝑡 ≤ 𝑇 𝑎𝑛𝑑 𝑢 𝑥, 0 = sin𝜋𝑥,   𝑓𝑜𝑟 0 < 𝑥 < 1 

We use Gaussian radial basis functions with  ∆𝑥 = 0.1, 𝑐 = 4, 𝑇1 = 0.02, and the set of equidistant 

collocation points for  𝑁 = 33 

First, this problem is solved in 0, 1 ×  0, 0.02  𝑎𝑛𝑑 𝛿 = 16; floating point arithmetic’s are used in 

this computation. The other approximations have been obtained only by forward and backward 

substitutions. 



  International Journal of Advanced Research in  ISSN: 2278-6252 

 Engineering and Applied Sciences  Impact Factor: 7.358 
 

Vol. 6 | No. 7 | July 2017 www.garph.co.uk IJAREAS | 31 
 

In this method, the solution of the problem is obtained in a closed form only by LU – decomposition 

of 33 × 33 matrix  𝑨. In the following table – 2, some values of the shape parameter 𝑐, the condition 

number of matrix, the RMS error𝐸2 =  
1

𝑀
  𝑢 𝑥𝑖 , 𝑡𝑖 − 𝑢  𝑥𝑖 , 𝑡𝑖  
𝑀
𝑖=1 , and  

The maximum error  𝐸∞ = max1≤𝑖≤𝑀 𝑢 𝑥𝑖 , 𝑡𝑖 − 𝑢  𝑥𝑖 , 𝑡𝑖  , they are listed for Gaussian RBF, and 

equidistant collocation points, where  𝑀 , it is the number of collocation points 𝑥 ∈  0, 1  𝑎𝑛𝑑 𝑡 ∈

 0, 1 , for ∆𝑥 = 0.1  𝑎𝑛𝑑 ∆𝑡 = 0.01, and also we conclude from the table – 2, the choice of the shape 

parameter has an auxiliary role in the stability of the problem. The dimension of matrix, it should be 

small sufficiently guarantee the stability of the solution of the resultant linear system. 

Table 2: Shape of parameter values 𝒄, 𝑬𝟐,   𝑬∞ , and corresponding condition number of 

matrix 𝑨 

Shape parameter 𝑐 𝐸2   𝐸∞  Condition number of 𝑨 

0.5 90651 × 1036 0.70000 × 1074 0.19676 × 1020 

1 33136 × 1014 0.20000 × 1030 0.20434 × 1019 

2 0.50227 5.0001 0.93751 × 1018 

3 0.10196 × 10−1 0.71266 × 10−3 0.66616 × 1018 

4 0.10384 × 10−1 0.74346 × 10−3 0.40811 × 1018 

5 0.10400 × 10−1 0.76029 × 10−3 0.11529 × 1018 

6 0.10150 × 10−1 0.75571 × 10−3 0.14832 × 1017 

7 0.95715 × 10−2 0.73241 × 10−3 0.30267 × 1016 

 

5. View of Implicit Collocation Technique  𝑯𝑬: 

In this technique, consider the problem of finding 𝑢 𝑥, 𝑡 , for the parabolic equation 

𝜕𝑢

𝜕𝑡
=

𝜕2𝑢

𝜕2𝑥
+ ∅ 𝑥, 𝑡  with 0 < 𝑥 < 1  𝑎𝑛𝑑 0 < 𝑡 ≤ 𝑇, and also with boundary conditions 

𝑢 0, 𝑡 = 𝑔0  𝑡   𝑓𝑜𝑟 0 < 𝑡 ≤ 𝑇  𝑎𝑛𝑑 𝑢 1, 𝑡 = 𝑔1 𝑡   𝑓𝑜𝑟 0 < 𝑡 ≤ 𝑇 , again we need the nonlocal 

time weighting initial condition   𝑢 𝑥, 0 =  𝛽𝑗  𝑥 
𝑁
𝑗=1 𝑢 𝑥, 𝑇𝑗  + 𝜑 𝑥 , with 

0 < 𝑇1 < ⋯ < 𝑇𝑁 = 𝑇 𝑎𝑛𝑑 0 < 𝑥 < 1  𝑤𝑕𝑒𝑟𝑒 ∅ , 𝑔0 , 𝑔1,𝛽𝑗 , 𝑇𝑗   𝑎𝑛𝑑 𝜑,  

They are known functions, while the function  𝑢, it is unknown.  

The existence, uniqueness and continuous dependence of the solution of the above problem are shown 

in [6] with the following assumption that is the weights  𝛽𝑗  𝑓𝑜𝑟 𝑗 = 1, 2, …𝑁,  

It must satisfy the inequality 

  𝛽𝑗  𝑥  
𝑁
𝑗=1 𝑒−𝜋

2𝑇𝑗 < 1, 𝑓𝑜𝑟 0 < 𝑥 < 1 , here .  , it is the maximum norm on𝐿2 0, 1 .  
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In it is important that the maximum principle can be employed like the standard parabolic initial 

boundary value problems 
[4, 5 &7]

. Our previous “Finite Difference Approximation view” is also 

developed for non standard initial or boundary condition for one – dimensional parabolic equations 
[2, 

3, 12 & 13]
. Before explain Collocation technique, we discussed again the method of evaluating  𝑢 𝑥, 𝑡 , 

by Finite Difference Scheme. 

5.1. Finite Difference Scheme (FDS): 

First the domain 0, 1 ×  0, 𝑇 , partitioned into an  𝑀 × 𝑀 mesh with the spatial steps size 

𝑕 =
1

𝑀
, in 𝑥 direction and the time step size  𝑘 =

1

𝑁
 respectively, grid points 𝑥𝑖 , 𝑡𝑗  , they are defined by 

𝑥𝑖 = 𝑖𝑕 , 𝑓𝑜𝑟 𝑖 = 0, 1, … ,𝑀  𝑎𝑛𝑑 𝑡𝑗 = 𝑗𝑘, 𝑓𝑜𝑟 𝑘 = 0, 1,… ,𝑁, where 𝑀,𝑁, they are integers. 

The notations   𝑢𝑖
𝑗
, 𝛽𝑘,𝑖 , 𝜑𝑖  𝑎𝑛𝑑 𝜑𝑖

𝑗
, they are used for the finite difference approximation of 

𝑢 𝑥𝑖 , 𝑡𝑗  , 𝛽𝑘 𝑥𝑖 , 𝜑 𝑥𝑖   𝑎𝑛𝑑 𝜑 𝑥𝑖 , 𝑡𝑗  , respectively, use direct simulation to the derivation of the  

One – dimensional equations
𝜕𝑢

𝜕𝑡
=

𝜕2𝑢

𝜕2𝑥
+ ∅ 𝑥, 𝑡  with  0 < 𝑥 < 1  𝑎𝑛𝑑 0 < 𝑡 ≤ 𝑇 , with boundary 

conditions  𝑢 0, 𝑡 = 𝑔0  𝑡   𝑓𝑜𝑟 0 < 𝑡 ≤ 𝑇  𝑎𝑛𝑑 𝑢 1, 𝑡 = 𝑔1 𝑡   𝑓𝑜𝑟 0 < 𝑡 ≤ 𝑇 

The explicit FDS leads to the following scheme for above equations that is 

𝑢𝑖
𝑗+1

= 𝑠𝑢𝑖
𝑗

+  1 − 2𝑠  𝑢𝑖−1
𝑗

+ 𝑠𝑢𝑖+1
𝑗

 + 𝑘𝜑𝑖
𝑗
                (5.1) 

Using the initial condition   𝑢 𝑥, 0 =  𝛽𝑗  𝑥 
𝑁
𝑗=1 𝑢 𝑥, 𝑇𝑗  + 𝜑 𝑥 , with 

0 < 𝑇1 < ⋯ < 𝑇𝑁 = 𝑇 𝑎𝑛𝑑 0 < 𝑥 < 1  𝑤𝑕𝑒𝑟𝑒 ∅ , 𝑔0 , 𝑔1,𝛽𝑗 , 𝑇𝑗   𝑎𝑛𝑑 𝜑 , they are known functions, 

while the function  𝑢, it is unknown. We get 

𝑢𝑖
0 =  𝛽𝑗 ,𝑖

𝑁
𝑗=1 𝑢

𝑖

𝑁𝑗 + 𝜑𝑖 , with 1 ≤ 𝑖 ≤ 𝑀 − 1                 (5.2) 

Using two given boundary conditions we get 

𝑢𝑖
0 = 0, 𝑢𝑀

𝑗
= 0  𝑓𝑜𝑟 0 ≤ 𝑗 ≤ 𝑁                   (5.3) 

If a directed method is used to solve 𝑢𝑖
𝑗
 we deal with a large non – linear system, but a simple 

iteration procedure be used because of the parabolic nature of the given problem. 

Let us take 𝑢0  0 = 0, it is the initial guess and then we get 

 𝑢𝑖
0 

 𝑙+1 
=  𝛽𝑗 ,𝑖

𝑁
𝑗=1  𝑢

𝑖

𝑁𝑗  
 𝑙 

+ 𝜑𝑖 , 𝑓𝑜𝑟 𝑖 = 1, 2, … ,𝑀 − 1 𝑎𝑛𝑑 𝑙 = 0, 1,2, …            (5.4) 

𝑤𝑕𝑒𝑟𝑒  𝑢𝑖
𝑗
 
 𝑙 

 

It is the finite solution of the forward Euler scheme with the initial data 𝑢𝑖
0 

 𝑙 
 

Note: 

a. The range of stability for this procedure is   0 ≤ 𝑠 ≤
1

2
.
[18]

 

b. This current explicit finite difference method for the numerical solution of the one – 

dimensional diffusion equation is the restriction of the size of the time step due to stability 
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requirements. These restrictions necessarily extremely small values of 𝑘, for most problems 

these are impractical methods, see the example of FDM. 

5.2. The three – point – Implicit Backward Time, Centered Space (BTCS) Method: 

It uses the formula over the time step𝑡𝑗  𝑡𝑜 𝑡𝑗+1, it is 

−𝑠𝑢𝑖−1
𝑗+1

+  1 + 2𝑠 𝑢𝑖
𝑗+1

− 𝑠𝑢𝑖+1
𝑗+1

= 𝑢𝑖
𝑗

+ 𝑘∅𝑖
𝑗+1

 𝑓𝑜𝑟 𝑖 = 1, 2, …𝑀 − 1               (5.5) 

Note that the resulting system of linear algebraic equations is tri diagonal and it is solved by using 

Thomas algorithm. Again this method is uncondionally von Neumann stable 
[18]

, values of  𝑢𝑖
𝑗+1

on the 

boundaries  𝑥 = 0, 1, they are provided by the given two boundary conditions. The main disadvantage 

of this implicit finite difference technique is the extensive amount of CPU times utilized in 

determining the numerical solution compared to the explicit method for the same selections values 

of  𝑠  𝑎𝑛𝑑 𝑕 

5.3. Implicit Collocation Technique (ICT): 

First the time – dependent partial differential equation is discredited in space, giving rise to a system 

of ordinary differential equations with unknown functions at each spatial grid points. The implicit 

collocation methods consist of approximating at each spatial grid point the solution by a polynomial 

that depends on time. Then determine the coefficients of all these polynomials. Depending on the 

given partial differential equation, we get a linear or non – linear system of equations, in this 

technique the system is linear 
[20]

, in which the unknowns are the coefficients. We can solve the 

resulting non – linear system by a direct or iterative technique. Once the coefficients of polynomials 

are determined, the approximated solution of the partial differential equation is computed on a given 

time interval that depends on the degree of the polynomial 
[16]

 

5.4. Procedure for ICT: 

Let us take𝑢𝑖
′ 𝑡 =

𝑢 𝑖−1 𝑡 −2𝑢𝑖 𝑡 +𝑢𝑖+1 𝑡 

𝑕2 + ∅𝑖 𝑡   𝑓𝑜𝑟 𝑖 = 1,… ,𝑁 − 1   

 (5.6) 

Note that   𝑢𝑖 0 = 𝑢 𝑥𝑖 , 0 , and let𝑃𝑖 𝑡 , it is the 𝑟𝑡𝑕 degree of polynomial satisfying the system  

(5.9) (given last) at each time𝑡𝑗   𝑓𝑜𝑟 𝑗 = 0, 1, … , 𝑟 − 1 

⟹ 𝑃𝑖 𝑡𝑗  = 𝑎0
𝑖 𝑡𝑗

𝑟 + 𝑎1
𝑖 𝑡𝑗

𝑟−1 + ⋯+ 𝑎𝑟
𝑖   𝑓𝑜𝑟 𝑖 = 1,… ,𝑁 − 1  𝑎𝑛𝑑 𝑗 = 1,… , 𝑟 − 1              (5.7) 

To solve
𝜕𝑢

𝜕𝑡
=

𝜕2𝑢

𝜕2𝑥
+ ∅ 𝑥, 𝑡  with 0 < 𝑥 < 1  𝑎𝑛𝑑 0 < 𝑡 ≤ 𝑇, by the ICT the coefficients 𝑎0

𝑖 , … , 𝑎𝑟−1
𝑖  

for 𝑖 = 1,… , 𝑁 − 1  , they should be determined. 

The coefficient  𝑎𝑟
𝑖 , it can be determined from the initial condition that is 

𝑎𝑟
𝑖 = 𝑃𝑖 0 = 𝑢 𝑥𝑖 , 0   𝑓𝑜𝑟 𝑖 = 1,… ,𝑁 − 1                  (5.8) 

Using (5.4) the coefficients   𝑎𝑟
𝑖 , 𝑓𝑜𝑟 𝑟 = 0, 1, … , 𝑟 − 1 𝑎𝑛𝑑 𝑖 = 1,… , 𝑁 − 1 , it can be obtained by 

the following procedure: This ICT developed by the combination of a finite difference scheme in 
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space and a collocation technique in time and also it is employed is a second – order approximation in 

space and an approximation of order 𝑟 in time. With implicit collocation method, the solution of the 

one – dimensional diffusion equation is approximated by polynomials. For a given time step, the time 

interval where the solution is computed depends on the degree of the polynomials. The higher, this 

degree is the higher order of the method is and the longer the time interval is and therefore it is 

tempting to choose polynomials of high degree, in order to approximate the solution is relatively long 

time interval by solving one  linear system. To solve given parabolic equation by collocation 

technique, a linear system which will be introduced 
[20]

 

First we introduce some notations, they are 

𝑋 =   𝑎0
1 , … , 𝑎𝑟−1

1  ,… ,  𝑎0
𝑁−1 , … , 𝑎𝑟−1

𝑁−1  
𝑇

 𝑎𝑛𝑑 𝐵 =   𝑎𝑟
1 , … , 𝑎𝑟

1 ,… ,  𝑎𝑟
𝑁−1 , … , 𝑎𝑟

𝑁−1  
𝑇
 

𝑃 =   𝑃1 𝑡0 ,… , 𝑃1 𝑡𝑟−1  ,… ,  𝑃𝑁−1 𝑡0 ,… , 𝑃𝑁−1 𝑡𝑟−1   
𝑇
 

𝑄 =   𝑢0 𝑡0 , … , 𝑢𝑜 𝑡𝑟−1  ,… ,  𝑢𝑁 𝑡0 ,… , 𝑢𝑁 𝑡𝑟−1   
𝑇
 

 

𝑺 =   𝒖𝟎 𝒕𝟎 − 𝟐𝒂𝒓
𝟏 + 𝒂𝒓

𝟐, … , 𝒖𝒐 𝒕𝒓−𝟏 − 𝟐𝒂𝒓
𝟏 + 𝒂𝒓

𝟐 𝑻, … ,  𝒂𝒓
𝟏 − 𝟐𝒂𝒓

𝟐 + 𝒂𝒓
𝟑, … , 𝒂𝒓

𝟏 − 𝟐𝒂𝒓
𝟐 + 𝒂𝒓

𝟑 𝑻, … ,  𝒂𝒓
𝑵−𝟐 − 𝟐𝒂𝒓

𝑵−𝟏 + 𝒖𝑵 𝒕𝟎 , … , 𝒂𝒓
𝑵−𝟐 − 𝟐𝒂𝒓

𝑵−𝟏

+ 𝒖𝑵 𝒕𝒓−𝟏  
𝑻 𝑻 

𝑃′ =   𝑃1
′  𝑡0 ,… , 𝑃1

′  𝑡𝑟−1  
𝑇 , … ,  𝑃𝑁−1

′  𝑡0 , … , 𝑃𝑁−1
′  𝑡𝑟−1  

𝑇 𝑇 

𝛼 =

 
 
 
 
𝑡0
𝑟

𝑡1
𝑟

𝑡0
𝑟−1

𝑡1
𝑟−1

⋯
⋯

𝑡0

𝑡1

⋮ ⋮ ⋱ ⋮
𝑡𝑟−1
𝑟 𝑡𝑟−1

𝑟−1 ⋯ 𝑡𝑟−1 
 
 
 

  𝑎𝑛𝑑 𝐴 = 𝐷𝑖𝑎𝑔𝑜𝑛𝑎𝑙  𝛼,… , 𝛼 ,  

Where 𝐴, it is a block – diagonal matrix of order 𝑟 𝑁 − 1 , and then we get 

𝛼′ =

 
 
 
 
𝑟𝑡0

𝑟−1

𝑟𝑡1
𝑟−1

 𝑟 − 1 𝑡0
𝑟−2

 𝑟 − 1 𝑡1
𝑟−2

⋯
⋯

2𝑡0    1
2𝑡1    1

⋮                  ⋮ ⋱ ⋮         ⋮
𝑟𝑡𝑟−1

𝑟−1  𝑟 − 1 𝑡𝑟−1
𝑟−2 ⋯  2𝑡𝑟−1 1   

 
 
 

  𝑎𝑛𝑑 𝑇 =

 
 
 
 
 
−2𝐼𝑟
𝐼𝑟
0
⋮
0

𝐼𝑟
−2𝐼𝑟
⋱
⋱
0

0
𝐼𝑟
⋱
𝐼𝑟
0

⋯
⋱
⋱

−2𝐼𝑟
𝐼𝑟

0
⋮
0
𝐼𝑟

−2𝐼𝑟 
 
 
 
 

 

Where𝐼𝑟 , it is the identity matrix of order 𝑟, and also 𝑇, it is a block – diagonal matrix of order 𝑟 𝑁 −

1, and then we get 𝑀=𝐷𝐶0⋮0𝐶𝐷⋱⋱⋯0𝐶⋱𝐶0⋯⋱⋱𝐷𝐶0⋮0𝐶𝐷 

𝑊𝑕𝑒𝑟𝑒 𝐶𝑖,𝑗 = −𝑡𝑖−1
𝑟+1−𝑗

  𝑎𝑛𝑑 𝐷𝑖,𝑗 = 𝑡𝑖−1
𝑟−𝑗  𝑕2 𝑟 + 1 − 𝑗 + 2𝑡𝑖−1   𝑓𝑜𝑟 𝑖, 𝑗 = 1, 2, … , 𝑟 

We can simply write as 

𝑆 = 𝑇𝐵 + 𝑄  𝑎𝑛𝑑 𝑀 = 𝑕2𝐴′ − 𝑇𝐴 , and also the vector 𝑋, it is the solution of the linear system 

𝑀𝑋 = 𝑆                    (5.9) 
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Note: 

a. If 𝐷 = 0, if and only if two values𝑡𝑖−1  𝑎𝑛𝑑 𝑡𝑗−1, they are identical. As the points  𝑡𝑖−1 

𝑓𝑜𝑟 𝑖 = 1,… , 𝑟, they are all distinct. 

b. If 𝐷 ≠ 0, and then the linear system 𝑀𝑋 = 𝑆, it has a unique solution. 

Example for ICT:
[16]

 

Considerthe one – dimensional equations
𝜕𝑢

𝜕𝑡
=

𝜕2𝑢

𝜕2𝑥
+ ∅ 𝑥, 𝑡  with  0 < 𝑥 < 1  𝑎𝑛𝑑 0 < 𝑡 ≤ 𝑇 , with 

boundary conditions  𝑢 0, 𝑡 = 𝑔0  𝑡   𝑓𝑜𝑟 0 < 𝑡 ≤ 𝑇  𝑎𝑛𝑑 𝑢 1, 𝑡 = 𝑔1 𝑡   𝑓𝑜𝑟 0 < 𝑡 ≤ 𝑇 𝑤𝑖𝑡𝑕 𝑁 =

2 

To solve
𝜕𝑢

𝜕𝑡
=

𝜕2𝑢

𝜕2𝑥
+ ∅ 𝑥, 𝑡  , with boundary conditions and the non standard initial conditions 

𝑢 𝑥, 0 =  𝛽𝑗  𝑥 
𝑁
𝑗=1 𝑢 𝑥, 𝑇𝑗  + 𝜑 𝑥  , in this we have 

𝑁 = 2  𝑎𝑛𝑑 + ∅ 𝑥, 𝑡 =  −1 + 𝜋2 sin𝜋𝑥 𝑒−𝑡                 (5.10) 

𝑢 𝑥, 0 = 𝑢 𝑥, 𝑇1 − 𝑢 𝑥, 𝑇2 + 𝜑 𝑥                  (5.11) 

𝜑 𝑥 = sin𝜋𝑥  1 − 𝑒𝑇1 + 𝑒𝑇2                   (5.12) 

𝑔0  𝑡 = 0 = 𝑔1  𝑡                    (5.13) 

For which the exact solution is   𝑢 𝑥, 𝑡 = 𝑒−𝑡 sin𝜋𝑥 

And also  0 < 𝑇1 < 𝑇2 = 𝑇; 𝛽1 = 1  𝑎𝑛𝑑 𝛽1 = −1, the results of the error in𝐿1norm, with 

𝑇1 = 0.5, 𝑇2 = 1, computed for various values of  𝑕 𝑎𝑛𝑑 𝑘 using this schemes report with 𝑢 𝑥, 0 , in 

(5.10) in a non – standard form and found by (5.4) are obtained. In order to keep the accuracy the 

stopping criteria 𝜀 of the iteration tolerance is chosen by   𝜀 = 0.5 𝑕2 + 𝑘 , in all above computations. 

That is let the initial guess 

𝑢0 = 0 , and if   𝑢0  𝑙+1 −  𝑢0  𝑙  ≤ 𝜀, 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑙, 𝑡𝑕𝑒𝑛   𝑢𝑖
0 

 𝑙+1 
 𝑎𝑛𝑑  𝑢𝑖

𝑁 
 𝑙+1 

, they will be 

accepted as the numerical initial value and final value respectively, and the computation will be 

terminated: The results obtained by various values of 𝑇𝑖 showed that what the initial value we start 

with  𝑢 𝑥, 𝑡  approaches the steady state quickly as   𝑡 increases, thus  𝑢 𝑥, 𝑡 , it can be calculated 

accurately for larger  𝑡, which in turn gives a good next step initial updated data. 

6. CRANK – NICOLSON SCHMIDT VIEW
[11]

 

For the parabolic equation 

𝑢𝑥𝑥 = 𝑢𝑡  

𝑢 0, 𝑡 = 𝑇0 And the initial condition s       

𝑢 𝑙, 𝑡 = 𝑇1 

𝑢 𝑥, 0 = 𝑓 𝑥 , 𝑓𝑜𝑟 0 < 𝑥 < 𝑙 
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6.1. Procedure: 

The given equation is   𝑢𝑥𝑥 = 𝑎𝑢𝑡                    (6.1) 

At the point𝑢𝑗 ,𝑗  we have the following finite difference approximation for𝑢𝑥𝑥  on the𝑗𝑡𝑕  row 

𝑢𝑥𝑥 ≈
𝑢𝑖−1,𝑗 − 2𝑢𝑖,𝑗 + 𝑢𝑖+1,𝑗

𝑕2
 

Similarly at the point𝑢𝑗 ,𝑗+1, we have 

𝑢𝑥𝑥 ≈
𝑢𝑖−1,𝑗+1 − 2𝑢𝑖,𝑗+1 + 𝑢𝑖+1,𝑗+1

𝑕2
 

Averaging these two approximations, we obtain 

𝑢𝑥𝑥 ≈
𝑢 𝑖−1,𝑗+1−2𝑢𝑖,𝑗+1+𝑢𝑖+1,𝑗+1+𝑢 𝑖−1,𝑗−2𝑢𝑖,𝑗+𝑢𝑖+1,𝑗

2𝑕2                   (6.2) 

For𝑢𝑡 , we use forward difference approximation 

𝑢𝑡 =
𝑢 𝑖,𝑗+1 −𝑢𝑖,𝑗

𝑘
                     (6.3) 

Substitute (6.2) and (6.3) in (6.1) we get 

𝑢𝑖−1,𝑗+1 − 2𝑢𝑖,𝑗+1 + 𝑢𝑖+1,𝑗+1 + 𝑢𝑖−1,𝑗 − 2𝑢𝑖,𝑗 + 𝑢𝑖+1,𝑗

2𝑕2
=

𝑎 𝑢𝑖,𝑗+1 − 𝑢𝑖,𝑗  

𝑘
 

⟹
𝑘

2𝑕2𝑎
 𝑢𝑖−1,𝑗+1 − 2𝑢𝑖,𝑗+1 + 𝑢𝑖+1,𝑗+1 + 𝑢𝑖−1,𝑗 − 2𝑢𝑖,𝑗 + 𝑢𝑖+1,𝑗  =  𝑢𝑖,𝑗+1 − 𝑢𝑖,𝑗   

Setting
𝑘

2𝑕2𝑎
= 𝜆, we have 

1

2
𝜆𝑢𝑖+1,𝑗+1 − 𝜆𝑢𝑖,𝑗+1 +

1

2
𝜆𝑢𝑖−1,𝑗+1 − 𝑢𝑖,𝑗+1 = 𝜆𝑢𝑖,𝑗 −

1

2
𝜆𝑢𝑖+1,𝑗 −

1

2
𝜆𝑢𝑖−1,𝑗 − 𝑢𝑖,𝑗  

⟹
1

2
𝜆𝑢𝑖−1,𝑗+1 −  𝜆 + 1 𝑢𝑖,𝑗+1 +

1

2
𝜆𝑢𝑖+1,𝑗+1 = −

1

2
𝜆𝑢𝑖−1,𝑗 +  𝜆 − 1 𝑢𝑖,𝑗 −

1

2
𝜆𝑢𝑖+1,𝑗              (6.4) 

This is called the general form of Crank Nicolson difference scheme. This equation (6.4) also called 

the implicit formula, as it does not give the value of   𝑢  𝑎𝑡  𝑡 = 𝑡𝑗+1directly in terms of the values of 

𝑢  𝑎𝑡  𝑡 = 𝑡𝑗 . Though  𝜆 it can take any value, we take  𝜆 = 1 in order to simplify the numerical work 

involved. When  𝜆 = 1 , the Crank Nicolson’s difference equation takes the simplest form, and then 

Equation (6.4) becomes, 

⟹
1

2
𝑢𝑖−1,𝑗+1 −  1 + 1 𝑢𝑖,𝑗+1 +

1

2
𝑢𝑖+1,𝑗+1 = −

1

2
𝑢𝑖−1,𝑗 −

1

2
𝑢𝑖+1,𝑗  

⟹ 𝑢𝑖−1,𝑗+1 − 4𝑢𝑖,𝑗+1 + 𝑢𝑖+1,𝑗+1 = −𝑢𝑖−1,𝑗 − 𝑢𝑖+1,𝑗   Or      

−𝑢𝑖−1,𝑗+1 + 4𝑢𝑖,𝑗+1 − 𝑢𝑖+1,𝑗+1 = 𝑢𝑖−1,𝑗 + 𝑢𝑖+1,𝑗                  (6.5) 

As far as possible, we should try to make use of equation (6.5), by proper choice of 

𝑕   𝑒𝑖𝑡𝑕𝑒𝑟 ′𝑎𝑛𝑑′ , ′𝑜𝑟′𝑘, 𝑠𝑜𝑡𝑕𝑎𝑡  𝜆 =
𝑘

2𝑕2𝑎
= 1   

Note: we have six points in Crank Nicolson’s method in (6.5), that is 

𝑢𝑖−1,𝑗  , 𝑢𝑖,𝑗 , 𝑢𝑖+1,𝑗 , 𝑎𝑛𝑑  𝑢𝑖−1,𝑗+1 , 𝑢𝑖,𝑗+1  𝑎𝑛𝑑  𝑢𝑖+1,𝑗+1 
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These six points are shown in figure (4): 

   𝑢𝑖−1,𝑗+1  𝑢𝑖,𝑗+1  𝑢𝑖+1,𝑗+1 

   

           𝑗 + 1 𝑠𝑡𝑟𝑜𝑤  
   

            

   𝑢𝑖−1,𝑗    𝑢𝑖,𝑗    𝑢𝑖+1,𝑗   𝑗 𝑡𝑕𝑟𝑜𝑤 

Figure: 4 Crane -Nicolson’s Scheme in 𝒋 𝒕𝒉𝒓𝒐𝒘  𝒂𝒏𝒅 𝒋 + 𝟏 𝒔𝒕𝒓𝒐𝒘 

Note: 

A convenient choice of  𝜆 = 1, it makes the Crane Nicolson’s scheme becomes simple, that is  𝑘 =

𝑎𝑕2 

Then we get modified form of Crane Nicolson’s Scheme is 

𝑢𝑖,𝑗+1 =
1

4
 𝑢𝑖−1,𝑗+1 + 𝑢𝑖+1,𝑗+1 + 𝑢𝑖−1,𝑗 + 𝑢𝑖+1,𝑗                   (6.6) 

So that we will use this simplified formula subject to 𝑘 = 𝑎𝑕2, and also Crane Nicolson’s Scheme as 

shown in figure (5): 

 𝑢𝑖−1,𝑗+1   𝑢𝑖,𝑗+1    𝑢𝑖+1,𝑗+1   𝑗 + 1  𝑟𝑜𝑤 𝑜𝑓 𝑡  

 𝐵    𝐴     𝐶 
 

 

    𝐸  𝐷 

    𝑢𝑖−1,𝑗   𝑢𝑖+1,𝑗     𝑗  𝑟𝑜𝑤 𝑜𝑓 𝑡  

Figure: 5 Crane Nicolson’s Scheme 

 

⟹The value of 𝐴 =Average of the values at  𝐵, 𝐶, 𝐷 𝑎𝑛𝑑 𝐸 

Note: 

1. The Crank Nicolson’s scheme converges for all finite values of  𝜆. 

2. It is an implicit scheme because, 

On the left side of system of linear equations (6.6) we have four unknowns and on the right 

sides all the four quantities are known. Equation (6.6) which is an implicit scheme: 

3. If there are  𝑁 internal mesh points on each row, then the CNS formula  give𝑠 𝑁 simultaneous 

equations for th𝑒 𝑁unknowns in terms of the given boundary values.  

4. Similarly, the internal mesh points on all rows can be calculated. 

5. If there are  𝑁 internal mesh points on each row, then formula (6.6) given 𝑁 simultaneous 

equations for the 𝑁  unknowns in terms of the given boundary values. Similarly, the internal 

mesh points on all rows can be calculated. 

6. CNS likes BTCS and unconditional stable, even though BTCS and CNS have similar 

procedure, but CNS scheme has a truncation error of   𝒪 ∆𝑥2 + 𝒪 ∆𝑡2 , that is temporal 

truncation error is significantly smaller than the temporal error of BTCS scheme. 
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6.2. Example for CNS View: 

Apply Crank – Nicolson method with𝑕 = 0.2  𝑎𝑛𝑑 𝜆 = 1 and find 𝑢 𝑥, 𝑡 , in the rod by considering 

two time steps of the heat equation𝑢𝑥𝑥 = 𝑢𝑡  satisfying the conditions 

𝑢 𝑥, 0 = sin𝜋𝑥  𝑎𝑛𝑑  𝑢 0, 𝑡 = 0 = 𝑢 𝑡, 𝑡 , and prepare table form as shown below 

   𝒙 − 𝒅𝒊𝒓𝒆𝒄𝒕𝒊𝒐𝒏  ⟶ 

𝑖 
𝑗 

0 1 2 3 4 5  
 
𝑅𝑜𝑤𝑠 

0 0.2 0.4 0.6 0.8 1.0 

0 0.588 0.951 0.951 0.588 0
  

0 
 

𝑡1 

0 
 

0.2 

0 𝑢1 𝑢2 𝑢3 𝑢40 

0 0.399 0.646 0.646 0.399 0 

0 𝑢5 𝑢6 𝑢7 𝑢80 

0 0.271 0.439 0.439 0.2710 

 

𝑅𝑜𝑤 1 
 

𝑅𝑜𝑤 2 

 

6.3. Explanation of above table working: 

First in the table,since  𝑢 𝑥, 0 = sin𝜋𝑥 

⟹ 𝑢 0, 0 = 0;  𝑢 0.2, 0 = sin
𝜋

5
= 0.5878 ≈ 0.588;  𝑢 0.4, 0 = sin

2𝜋

5
= 0.9511 ≈ 0.951 

⟹ 𝑢 0.6, 0 = sin
3𝜋

5
= 0.9511 ≈ 0.951; 𝑢 0.8, 0 = sin

4𝜋

5
= 0.578 ≈ 0.588 𝑎𝑛𝑑 

𝑢 1, 0 = sin
5𝜋

5
= 0 

Filling the place of in the value of𝑥 − 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 

Secondly, in the table we need 

𝑢1 =
0+0.951+0+𝑢2

4
; 𝑢2 =

𝑢1+0.558+0.951+𝑢3

4
;  𝑢3 =

𝑢2+0.951+0.588+𝑢4

4
 ; 𝑢4 =

𝑢3+0.951+0+0

4
, by (6.6)  

We simply solve in terms𝑢1 , 𝑢2¸𝑢3 𝑎𝑛𝑑 𝑢4, we get the following system of linear equations 

𝑢1 = 0.23775 +
1

4
𝑢2 ⟹ 4𝑢1 − 𝑢2 = 0.951 

𝑢2 =
1

4
𝑢1 + 0.038475 +

1

4
𝑢3 ⟹ −𝑢1 + 4𝑢2 − 𝑢3 = 0.1539 

𝑢3 =
1

4
𝑢2 + 0.038475 +

1

4
𝑢4 ⟹ −𝑢2 + 4𝑢3 − 𝑢4 = 1.539 

𝑢4 =
1

4
𝑢3 + 0.23775 ⟹ −𝑢3 + 4𝑢4 = 0.951 

So that we get the following system of linear equations in terms of𝑢1 , 𝑢2 , 𝑢3 , 𝑢4, they are 

                  4𝑢1 −  𝑢2                            = 0.951 

−𝑢1 + 4𝑢2 −   𝑢3              = 0.1539                   (6.7) 

            −    𝑢2 + 4𝑢3 −   𝑢4 = 1.1539 

−     𝑢3 + 4𝑢4 = 0.951 

Solve this system (6.7) (Note that this system has coefficient matrix is in tri – diagonal matrix form) 

by any method (like as elimination, substitution and others) then we found that 

𝒕 

↓ 
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𝑢1 = 0.399, 𝑢2 = 0.646, 𝑢3 = 0.646  𝑎𝑛𝑑 𝑢4 = 0.399, we can filled the first row elements in the 

above table, similarly we will fill second row elements   𝑢5 , 𝑢6¸𝑢7 𝑎𝑛𝑑 𝑢8. 

7. CONCLUSION 

By the Fourier point of view we will get the result after long calculations, and its convergence is 

depends upon continuity, boundedness and other conditions
[16, 17]

, by FTM – Bender Schmidt method, 

we will get the results after some more steps for the same given example, but explicit scheme has 

convergence only limited in 0 < 𝜆 ≤
1

2
, RBF also give the results near to exact solution but we need 

number of 𝒪 𝑛3 + 2𝒪 𝑛2 operations to get the solutions. ICT also needs more calculations and 

number of iterations to reach near to exact solution and also the accuracy of numerical calculations 

not only depend on the step sizes but also on the two parameters 𝛽1 𝑎𝑛𝑑 𝛽2  But CNS, needs few steps 

by solving system of linear equations depend up on number of unknowns𝑢𝑖 , 𝑓𝑜𝑟 𝑖 = 1, 2, … to find 

the solutions of one – dimensional heat equations to reach near to exact solution needsonly 

choosing   𝜆, properly,and also no need more calculations with short time, finally it convergence for 

all values of   𝜆, and truncation error also significantly smaller than other approaches so that, from this 

article we conclude that CNS is still as a major role to solve one – dimensional heat equation. 
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