

SQUARE SUM PRIME LABELING OF SOME CYCLE RELATED GRAPHS

Sunoj B S, Department of Mathematics, Government Polytechnic College, AttingalMathew Varkey T K, Department of Mathematics, T K M College of Engineering , Kollam

Abstract: Square sum prime labeling of a graph is the labeling of the vertices with {0, 1, 2-------, p-1} and the edges with sum of the squares of the labels of the incident vertices. The greatest common incidence number of a vertex (**gcin**) of degree greater than one is defined as the greatest common divisor of the labels of the incident edges. If the **gcin** of each vertex of degree greater than one is one, then the graph admits square sum prime labeling. Here we identify some cycle related graphs for square sum prime labeling.

Keywords: Graph labeling, square sum, greatest common incidence number, prime labeling.

1. INTRODUCTION

All graphs in this paper are simple, finite, connected and undirected. The symbol V(G) and E(G) denotes the vertex set and edge set of a graph G. The graph whose cardinality of the vertex set is called the order of G, denoted by p and the cardinality of the edge set is called the size of the graph G, denoted by q. A graph with p vertices and q edges is called a (p,q)-graph.

A graph labeling is an assignment of integers to the vertices or edges. Some basic notations and definitions are taken from [2],[3] and [4]. Some basic concepts are taken from [1] and [2]. The square sum labeling was defined by V Ajitha, S Arumugan and K A Germina in [5]. In this paper we introduced square sum prime labeling using the concept greatest common incidence number of a vertex. We proved that some cycle related graphs admit square sum prime labeling.

Definition: 1.1 Let G be a graph with p vertices and q edges. The greatest common incidence number (*gcin*) of a vertex of degree greater than or equal to 2, is the greatest common divisor (gcd) of the labels of the incident edges.

2. MAIN RESULTS

Definition 2.1 Let G = (V, E) be a graph with p vertices and q edges. Define a bijection f: V(G) \rightarrow {0,1,2,3,-----,p-1} by f(v_i) = i-1 , for every i from 1 to p and define a 1-1 mapping f_{sqsp}^* : E(G) \rightarrow set of natural numbers N by $f_{sqsp}^*(uv) = {f(u)}^2 + {f(v)}^2$. The

induced function f_{sqsp}^* is said to be a sum square prime labeling, if for each vertex of degree at least 2, the greatest common incidence number is 1.

Definition 2.2 A graph which admits square sum prime labeling is called a square sum prime graph.

Theorem 2.1 Cycle C_n admits square sum prime labeling, when n is odd.

Proof: Let $G = P_n$ and let v_1, v_2, \dots, v_n are the vertices of G

Here |V(G)| = n and |E(G)| = n

Define a function $f: V \rightarrow \{0, 1, 2, 3, \dots, n-1\}$ by

$$f(v_i) = i - 1$$
, $i = 1, 2, ----, n$

Clearly f is a bijection.

For the vertex labeling f, the induced edge labeling f_{sqsp}^* is defined as follows

 $f_{sqsp}^{*}(v_{i} v_{i+1}) = 2i^{2} - 2i + 1, \qquad i = 1, 2, ----, n-1$ $f_{sqsp}^{*}(v_{1} v_{n}) = n^{2} - 2n + 1.$

Clearly f_{sqsp}^* is an injection.

$$gcin \text{ of } (v_{i+1}) = \gcd \text{ of } \{f_{sqsp}^{*}(v_{i} v_{i+1}), f_{sqsp}^{*}(v_{i+1} v_{i+2})\} \\ = \gcd \text{ of } \{2i^{2}+2i+1, 2i^{2}-2i+1\} \\ = \gcd \text{ of } \{4i, 2i^{2}-2i+1\}, \\ = \gcd \text{ of } \{i, 2i^{2}-2i+1\} = 1, \qquad i = 1, 2, -----, n-2 \\ gcin \text{ of } (v_{1}) = \gcd \text{ of } \{f_{sqsp}^{*}(v_{1} v_{2}), f_{sqsp}^{*}(v_{1} v_{n})\} \\ = \gcd \text{ of } \{f_{sqsp}^{*}(v_{1} v_{2}), f_{sqsp}^{*}(v_{1} v_{n})\} \\ = \gcd \text{ of } \{f_{sqsp}^{*}(v_{1} v_{n}), f_{sqsp}^{*}(v_{n-1} v_{n})\}, \\ = \gcd \text{ of } \{2n^{2}-6n+5, n^{2}-2n+1\}, \\ = \gcd \text{ of } \{n^{2}-4n+4, n^{2}-2n+1\} = \gcd \text{ of } \{n-2,n-1\} = 1. \end{cases}$$

So, gcin of each vertex of degree greater than one is 1.

Hence C_n, admits square sum prime labeling.

Theorem 2.2 Middle graph of cycle C_n admits square sum prime labeling, when n is an even integer.

Proof: Let $G = M(C_n)$ and let v_1, v_2, \dots, v_{2n} are the vertices of G

Here |V(G)| = 2n and |E(G)| = 3n

Define a function $f: V \rightarrow \{0,1,2,3,----,2n-1\}$ by

 $f(v_i) = i-1$, i = 1, 2, ----, 2n

Clearly f is a bijection.

Vol. 6 | No. 7 | July 2017

For the vertex labeling f, the induced edge labeling f_{sqsp}^* is defined as follows

$f_{sqsp}^{*}(v_{i} v_{i+1})$	$= 2i^2 - 2i + 1,$	i = 1,2,,2n-1	
$f_{sqsp}^{*}(v_{2i} v_{2i+2})$	$= 8i^2 + 2$	i = 1,2,,n-1	
$f^*_{sqsp}\left(v_1 \ v_{2n}\right)$	$= (2n-1)^2$.		
$f^*_{sqsp}\left(v_2 \ v_{2n}\right)$	$= (2n-1)^2 + 1.$		
Clearly f_{sqsp}^* is an injection.			
<i>gcin</i> of (v_{i+1})	= 1,	i = 1,2,,2n-2	
<i>gcin</i> of (v_1)	= 1.		
<i>gcin</i> of (v_{2n})	$= \gcd \text{ of } \{ f_{sqsp}^* (v_1 v_{2n}), f_{sqsp}^* (v_{2n-1} v_{2n}) \}$		
	$=$ gcd of {(2n-1) ² , 8n ² -12n+5}		
	$=$ gcd of {2n-1, (2n-1)(4n-4)+1}		
	=1.		

So, *gcin* of each vertex of degree greater than one is 1.

Hence M(C_n), admits square sum prime labeling.

Theorem 2.3 Total graph of cycle C_n admits square sum prime labeling, when is even.

Proof: Let $G = T(C_n)$ and let v_1, v_2, \dots, v_{2n} are the vertices of G Here |V(G)| = 2n and |E(G)| = 4n.

Define a function $f: V \to \{0, 1, 2, 3, ----, 2n-1\}$ by

$$f(v_i) = i-1$$
, $i = 1, 2, ----, 2n$

Clearly f is a bijection.

For the vertex labeling f, the induced edge labeling f_{sqsp}^* is defined as follows

$f_{sqsp}^{*}\left(v_{i} \ v_{i+1}\right)$	$= 2i^2 - 2i + 1,$	i = 1,2,,2n-1
$f_{sqsp}^{*}(v_{2i} v_{2i+2})$	$= 8i^2 + 2,$	i = 1,2,,n-1
$f_{sqsp}^{*}(v_{2i-1} v_{2i+1})$	$= 8i^2 - 8i + 4,$	i = 1,2,,n-1
$f^*_{sqsp}\left(v_1 \ v_{2n}\right)$	$= 4n^2 - 4n + 1.$	
$f_{sqsp}^{*}\left(v_{2} \ v_{2n}\right)$	$= 4n^2 - 4n + 2.$	
$f_{sqsp}^{*}(v_{1} v_{2n-1})$	$= 4n^2 - 8n + 4.$	
Clearly f_{sqsp}^* is an injection	1.	
<i>gcin</i> of (v_{i+1})	= 1,	i = 1,2,,2n-2
<i>gcin</i> of (v_1)	= 1.	
<i>gcin</i> of (v_{2n})	= 1.	
So, gcin of each vertex of	degree greater than one is 1.	

Hence $T(C_n)$, admits square sum prime labeling. **Theorem 2.4** Corona of cycle C_n admits square sum prime labeling. Proof: Let $G = C_n \Theta K_1$ and let v_1, v_2, \dots, v_{2n} are the vertices of G Here |V(G)| = 2n and |E(G)| = 2nDefine a function $f: V \rightarrow \{0, 1, 2, 3, \dots, 2n-1\}$ by $f(v_i) = i-1$, $i = 1, 2, \dots, 2n$ Clearly f is a bijection. For the vertex labeling f, the induced edge labeling f_{sasp}^* is defined as follows Case(i) n is even $= 2i^2 - 2i + 1$, $f_{sasp}^*(v_i v_{i+1})$ i = 1,2,----,n+1 $= n^2 + 1,$ $f_{sasn}^{*}(v_2 v_{n+1})$ $f_{sqsp}^{*}(v_{i+2} v_{n+i+2}) = n^{2} + 2n(i+1) + 2(i+1)^{2},$ i = 1,2,----,n-2 Clearly f_{sasp}^* is an injection. *gcin* of (v_{i+1}) = 1. i = 1.2,----.n So, *gcin* of each vertex of degree greater than one is 1. Hence $C_n \odot K_1$ admits square sum prime labeling, when n is even. Case(ii) n is odd $f_{sqsp}^{*}(v_{i} v_{i+1})$ $= 2i^2 - 2i + 1$, i = 1,2,----,n-1 $= n^2 - 2n + 1$, $f_{sasp}^{*}(v_{1} v_{n})$ $= 4n^2 - 4ni + 2i^2 - 2i + 1,$ i = 1,2,----,n $f_{sqsp}^*(v_i v_{2n-i+1})$ Clearly f_{sasp}^* is an injection. = 1, i = 1,2,----,n-1 *gcin* of (v_{i+1}) = gcd of { 1,(n-1)²} = 1, *gcin* of (v_1) So, *gcin* of each vertex of degree greater than one is 1. Hence $C_n O K_1$ admits square sum prime labeling, when n is odd. **Theorem 2.5** Wheel graph W_n admits square sum prime labeling, when n is odd. Proof: Let $G = W_n$ and let u, v_1, v_2, \dots, v_n are the vertices of G Here |V(G)| = n+1 and |E(G)| = 2nDefine a function $f: V \rightarrow \{0, 1, 2, 3, \dots, n\}$ by $f(v_i) = i, i = 1, 2, \dots, n$ f(u) = 0

Clearly f is a bijection.

Vol. 6 | No. 7 | July 2017

 $= i^2$. $f_{sqsp}^{*}(u v_i)$ i = 1,2,----,n. $= n^2 + 1.$ $f_{sqsp}^{*}(v_1 v_n)$ $= 2i^2 + 2i + 1$, $f^*_{sqsp}\left(v_i \; v_{i+1}\right)$ i = 1,2,----,n-1 Clearly f_{sasp}^* is an injection. *gcin* of (u) = 1. *gcin* of (v_{i+1}) = 1. i = 1,2,----,n-1 = 1. *gcin* of (v_n) So, gcin of each vertex of degree greater than one is 1. Hence W_n admits square sum prime labeling, when n is odd. **Theorem 2.6** $C_n(P_m)$ admits square sum prime labeling, when n is odd. Proof: Let $G = C_n(P_m)$ and let $v_1, v_2, \dots, v_{n+m-1}$ are the vertices of G Here |V(G)| = n+m-1 and |E(G)| = n+m-1Define a function $f: V \rightarrow \{0, 1, 2, 3, \dots, n+m-2\}$ by $f(v_i) = i-1$, $i = 1, 2, \dots, n+m-1$ Clearly f is a bijection. For the vertex labeling f, the induced edge labeling f_{sqsp}^* is defined as follows $f_{sasp}^*(v_i v_{i+1})$ $= 2i^2 - 2i + 1$. i = 1.2,----.n+m-2 $= n^2 - 2n + 1$. $f_{sasp}^{*}(v_1 v_n)$ Clearly f_{sasp}^* is an injection. *gcin* of (v_{i+1}) = 1, i = 1,2,----,n+m-3 *gcin* of (v₁) = 1. So, *gcin* of each vertex of degree greater than one is 1. Hence $C_n(P_m)$ admits square sum prime labeling, when n is odd. **Theorem 2.7** $C_n(2P_m)$ admits square sum prime labeling, when n, m odd. Proof: Let $G = C_n(2P_m)$ and let $v_1, v_2, \dots, v_{n+2m-2}$ are the vertices of G Here |V(G)| = n+2m-2 and |E(G)| = n+2m-2Define a function $f: V \to \{0, 1, 2, 3, \dots, n+2m-3\}$ by $f(v_i) = i-1$, $i = 1, 2, \dots, n+2m-2$ Clearly f is a bijection. For the vertex labeling f, the induced edge labeling f_{sasp}^* is defined as follows $= 2i^2 - 2i + 1$, i = 1,2,----,n+2m-3 $f_{sasp}^*(v_i v_{i+1})$

For the vertex labeling f, the induced edge labeling f_{sqsp}^* is defined as follows

 $f_{sqsp}^{*}(v_m v_{m+n-1})$

$$= (m-1)^2 + (m+n-2)^2$$

Clearly f_{sqsp}^* is an injection.

gcin of (v_{i+1})

i = 1, 2, ----, n+2m-4

So, *gcin* of each vertex of degree greater than one is 1.

Hence $C_n(2P_m)$ admits square sum prime labeling, when n is odd.

= 1,

REFERENCES

- 1. Apostol. Tom M, Introduction to Analytic Number Theory, Narosa, (1998).
- 2. F Harary, Graph Theory, Addison-Wesley, Reading, Mass, (1972)
- Joseph A Gallian, A Dynamic Survey of Graph Labeling, The Electronic Journal of Combinatorics(2016), #DS6, pp 1 – 408.
- 4. T K Mathew Varkey, Some Graph Theoretic Generations Associated with Graph Labeling, PhD Thesis, University of Kerala 2000.
- 5. V Ajitha, S Arumugam and K A Germina "On Square Sum Graphs"AKCE Journal of Graphs and Combinatorics, Volume 6 (2006), pp 1-10.