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KINEMATICS OF AN OVERCONSTRAINED MECHANISM IN PRACTICE  
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Abstract: In 1939 Paul Schatz, a Swiss anthroposophist and geometrician had invented a 

mechanism which with few links generates spatial motions. Mixing machine based on this 

Schatz mechanism uses a highly ordered form of three dimensional motion that brings 

centrifugal and centripetal forces to dynamic balance. This results in ideal mixing 

environment. While exploring this mechanism, it was then clear that this mechanism is a six 

link spatial mechanism which does not satisfy the Kutzbach criterion of full cycle mobility. 

Such practical application of overconstrained mechanism has very interesting 

characteristics. Without the use of cams or gears it performs spatial motion. The work 

described in this paper is an attempt to describe general kinematics of this six link 

mechanism involving only revolutes, using matrix method. As discussed here, a spatial 

mechanism containing only revolutes is derived from the seven link kinematics chain. 

However mechanism described here has only six links including the fixed base. If the link 

lengths are selected arbitrary, then the mechanism will result in immobility with no degrees 

of freedom. Mobility of the mechanism is because of specific linear dimensions only. The 

mobility of the mechanism is proved with this kinematics description. 

Keywords: overconstrained mechanism, 3-D Mixer, D & H Matrix, kinematics, mobility 

criterion, spatial mechanism 
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OVERCONSTRAINED MECHANISM: 

A mechanism is commonly identified as a set of moving or working parts in a machine or 

other device essentially as a means of transmitting, controlling, or constraining relative 

movement. A mechanism is often assembled from gears, cams and linkages, though it may 

contain other specialized components, such as springs, ratchets, brakes, and clutches, as 

well.  

Reuleaux published the first book on theoretical kinematics of mechanisms in 1875 (Hunt, 

1978). Later on the general mobility criterion of an assembly was established by Grübler in 

1921 and Kutzbach in 1929, respectively (Phillips, 1984), based on the topology of the 

assembly [1]. However, it was found that this criterion is not a necessary condition. Some 

specific geometric condition in an assembly could make it a mechanism even though it does 

not obey the mobility criterion. This type of mechanisms is called an over-constrained 

mechanism.  

The first published research on over-constrained mechanisms can be traced back to 150 

years ago when Sarrus discovered a six-bar mechanism capable of rectilinear motion [1]. 

Gradually more over-constrained mechanisms were discovered by other researchers in the 

next half a century. However, most over-constrained mechanisms have rarely been used in 

industrial applications because of the development of gears, cams and other means of 

transmission, except two of them: the double- Hooke’s-joint linkage, which is widely applied 

as a transmission coupling, and the Schatz linkage, which is used as a 3-Dimensional Mixing 

machine for mixing fluids and powders. Over the recent half century, very few Over-

constrained mechanisms have been found. Most research work on Over-constrained 

mechanisms is mainly focused on their kinematic characteristics. 

LINKAGES AND OVER-CONSTRAINED LINKAGES [1] 

A linkage is a particular type of mechanism consisting of a number of interconnected 

components, individually called links. The physical connection between two links is called a 

joint. All joints of linkages are lower pairs, i.e. surface-contact pairs, which include spherical 

joints, planar joints, cylindrical joints, revolute joints, prismatic joints, and screw joints. Here 

we limit our attention to linkages whose links form a single loop and are connected only by 

revolute joints, also called rotary hinges. These joints allow one-degree-of-freedom 

movement between the two links that they connect. The kinematic variable for a revolute 

joint is the angle measured around the two links that it connects.  
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From classical mobility analysis of mechanisms, it is known that the mobility m of a linkage 

composed of n links that are connected with p joints can be determined by the Kutzbach (or 

Grübler) mobility criterion (Hunt, 1978): 

m = 6(n - p -1) + f   …………………………………………... (1) 

where Σ f is the sum of kinematic variables in the mechanism. 

For an n--link closed loop linkage with revolute joints, p = n, and the kinematic variable Σ f = 

n. Then the mobility criterion in (1) becomes; 

         m = n - 6 …………………………….…………………... (2) 

So in general, to obtain a mobility of one, a linkage with revolute joints needs at least seven 

links. It is important to note that (2) is not a necessary condition because it considers only 

the topology of the assembly. There are linkages with full-range mobility even though they 

do not meet the mobility criterion. These linkages are called over-constrained linkages. 

Their mobility is due to the existence of special geometry conditions among the links and 

joint axes that are called over-constrained conditions. 

Denavit and Hartenberg (1966) set forth a standard approach to the analysis of linkages, 

where the geometric conditions are taken into account. They pointed out that, for a closed 

loop in a linkage, the necessary and sufficient mobility condition is that the product of the 

transform matrices equals the unit matrix, i.e. 

 n1 34 23 12[T ]  [T ][T ][T ] = I ……………………………. (3) 

Where [T i(i+1)] is the transfer matrix between the system of link (i −1)i and the system of link 

i(i +1). 

Over-constrained mechanisms have many appealing characteristics. Most of them are 

spatial mechanisms. Their spatial kinematic characteristics make them good candidates in 

modern linkage designs where spatial motion is needed. Another advantage of Over-

constrained mechanisms is that they are mobile using fewer links and joints than it is 

expected. For example, in normal closed loop revolute joint spatial mechanisms, the linkage 

should have at least seven links to be mobile. Over-constrained mechanisms can be mobile 

with four, five or six links. Fewer links and joints in a mechanism mean reduction in cost and 

complexity [2]. 

While many over-constrained mechanisms have been discovered, only a few of them have 

been used in practical applications. There are many reasons for this. Most of the engineers 
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are unaware of the existence of spatial over-constrained mechanisms and their properties. 

For example, very few engineers in industry know the four-bar Bennett or the six-bar 

Bricard spatial mechanisms and their properties and hence they can not consider these 

mechanisms in their designs. The other reason for not using over-constrained mechanisms 

in industrial applications is that most of the known over-constrained mechanisms have 

complex kinematic properties. This is because these mechanisms have been found using 

mobility criteria only and not other criteria as well, such as to satisfy a desired input-output 

relationship. 

The minimum number of links to construct a mobile loop with revolute joints is four as a 

loop with three links and three revolute joints is either a rigid structure or an infinitesimal 

mechanism when all three revolute axes are coplanar and intersect at a single point 

(Phillips, 1990). So, 3D over-constrained linkages can have four, five or six links. When these 

linkages consist of only revolute joints, they are called 4R, 5R or 6R linkages. 

SCHATZ LINKAGE[1] 

The Schatz linkage discovered and patented by Schatz was derived from a special trihedral 

Bricard linkage (Phillips, 1990). First, set this trihedral Bricard linkage in a configuration such 

that angles between the adjacent links are all π /2, see Fig 1.Then replace links 61, 12, and 

56 with a new link 61 of zero twist and a new pair of parallel shafts 12 and 56 (two links of 

zero length). By now, a new asymmetrical 6R linkage has been obtained with single degree 

of mobility. The dimension constraints of the linkage are as follows: 

 

  

Figure 1.  P Schatz Linkages Figure 2. Schatz 3D Mixer 
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12 56 23 34 45 61a  = a  =0, a = a  = a  =a, a  = 3a   ……………………………………… (4) 

12 23 34 45 56 =  = =  =  = 2        ……………………………………… (5) 

 

……………………………………. (6) 

Brát (1969) studied the kinematic description of the Schatz linkage using the matrix method. 

This linkage is also known by the name Turbula because it constitutes the essential 

mechanism of a machine by that name, see Fig. 2. It is used for mixing fluids and powders.  

Spatial mechanisms have little applications, because the complexities of kinematic relations 

have prevented solutions by conventional methods. The graphical method has major 

limitations in their applications to spatial problems as they depend on the choices which 

require a visualization of the motion & visualization of spatial mechanism is very difficult.  

A method based on the matrix algebra, initiated by J. Denavit & R. S. Hartenberg is proved 

very useful till today. The procedure defines all parameters required for a kinematic analysis 

and allows formulating spatial problems in terms of matrix equations 

DESCRIPTION OF D & H MATRIX ALGEBRA METHOD FOR ANALYSIS OF 

SPATIAL MECHANISMS [3]   

xi = axis formed by common perpendicular directed from zi-1  to zi. If these axes intersect, 

orientation of  xi  is arbitrary. 

yi = axis implicitly defined to form a right handed Cartesian coordinate system, xi, yi, zi 

ai  = length of common perpendicular from zi to zi +1 ; always positive  

αi = angle from positive zi to positive zi + 1, measured counterclockwise about positive Xi 

In any simple closed chain of binary links, the Grubler criterion requires that, for 

constrained motion, the sum of the degrees of freedom of the individual joints be equal to 

seven. Even with the exceptions produced by redundant constraints, this implies that the 

total number of links, “n” must be less than or equal to seven. 

    n ≤ 7 

If the dimensions of a linkage are measured according to the format outlined here, the 

geometry of any link i & its position relative to i-1 may be completely specified by four 

parameters, ai, αi, θi and si  as shown in figure 3. 

1 6 2 3 4 5 R  = -R ,   R = R  = R  = R =0



  International Journal of Advanced Research in  ISSN: 2278-6252 

 Engineering and Applied Sciences  Impact Factor: 5.795 

 

Vol. 4 | No. 12 | December 2015 www.garph.co.uk IJAREAS | 14 

 

Figure 3. D & H Symbolic Notations 

These four parameters should be measured for each joint or pair of the linkage according to 

the following set of conventions: 

i =  number of particular joint or pair. Input pair will be taken as 1, and remaining joints 

will be numbered consequently around closed loop. 

zi = characteristic axis of rotation for pair involved. All the z – axis should be defined 

clearly and arbitrary orientation indicated. 

xi + 1 

θi = angle from positive xi  to positive xi + 1 measured counterclockwise about positive zi 

si = distance along zi from xi  to  xi + 1. Takes sign from orientation of positive zi 

Once the four parameters have been established for each pair of a linkage, the geometry of 

the linkage is completely specified, and can be represented by a symbolic equation of the 

form ai, αi, θi and si 

2 3
4

6

1 2 3 4 5 6

1

6
1

a a
0 a 0

a

02 2
R R R R R R I2 2 2

0
2 2 s

s 0 0
0 0



   
                                                                       

        
   

 …………… (7) 

Where R1 denotes that pair 1 is a revolute joint with θ1 as variable, P2 denotes that pair 2 is a 

prismatic pair with variable s2, and so on. I indicate that the chain is closed. In addition, it 

will always be assumed that pair 1 is the input, so that θ1, is the input variable of the 

linkage. Although equation 7 is only a symbolic equation describing the geometry of the 
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mechanism, it does lead to a convenient matrix equation. The xi, yi, zi axes define a right 

handed Cartesian-coordinate system rigidly attached to link i. The four parameters, ai, αi, θi 

and si, fix the position of the coordinate system of link i +1 relative to that of link i. The 

relative positions of these two coordinate systems can be stated analytically in terms of a (4 

X 4) transformation matrix involving only the four parameters, ai, αi, θi and si, 

i i i i i i

i

i i i i i i

i i i

1 0 0 0

a cos cos sin cos sin isin
A

a sin sin cos cos cos isin

s 0 sin cos

 
 

       
       
 

  

 …………… (8) 

Since the mechanism is simple closed loop, the n + 1 coordinate system is identical with 

coordinate system 1. This may be expressed in terms of the matrices as, 

    1 2 n A A A = I   …………………………… (9),  

where n is the number of links and I is the (4 X 4) unit matrix. 

This equation completely describes the geometry of the linkage, and its solutions should 

yield a complete displacement analysis, i. e., the values of all pair variables of the linkage in 

terms of the fixed parameters and the input variable θ1 (or s1). 

KINEMATIC DESCRIPTION OF 3-D MIXER  

  

Figure 4. 6R 3D Mixer Linkages Showing D & H Notations 

The 3-D mixing mechanism mentioned here comprises a six link spatial mechanism which 

involves only revolute joints. 

The kinematic schematic of this mechanism is shown in figure 4. The main member of the 

mechanism is the “Drum” (3), which supports the container with material to be mixed. The 
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drum moves with general spatial motion. The driving member is “Fork” (1) which is same as 

member (5). Member (2) and (4) are named as “Yoke” forms the universal joint with drum, 

member (3). Member (6) is the fixed base, on which the whole assembly of drum, yokes and 

forks is mounted. Attempt is made here to derive the kinematic model of this mechanism 

following the Denavit & Hartenberg matrix method. 

Characteristic axis of motion at the joint of member (1)-fork1 with member (6)-Fixed base 

and characteristic axis of motion at the joint of member (5)-fork2 with member (6)-fixed 

base are parallel, (Z1 II Z6). Characteristic axis of motion at the joint of member (1)-fork1 

with member (2)-yoke1 and characteristic axis of motion at the joint of member (5)-fork2 

with member (4)-yoke2, are initially at right angle and keeps on changing their position 

while mechanism is in motion, (Axis Z5 and Axis Z6). Characteristic axis of motion at the joint 

of member (2)-yoke1 with member (3)-Cylinder and the characteristic axis of motion at the 

joint of member (4)-yoke2 and member (3)-cylinder are always at right angle, (Z3 Z4). 

Ordinarily the main members of the mechanism perform only rotational and translatory 

motion while the spatial character of the mechanism is caused by connecting members. This 

is the case, for example in a Hooke’s joint with the crossed or skewed input and output 

shafts. 

The coordinate systems at the joint position of each members are assigned according to 

Denavit & Hartenberg procedure and four parameters (ai, αi, θi and si,) have been assigned 

for each pair of  a linkage to specify the geometry of any link i and its position relative to link 

i – 1 as shown in figure 4.  

Table 1. D & H Parameters of links 

 

Now the geometry of linkage is completely specified and can be represented by a symbolic 

equation of the form: 
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……………….. (10) 

  

 

Where Ri denotes that pair i is revolute pair with θi as variable. I indicate that the chain is 

closed. In addition it is clear that pair 1 is the input pair, so that θ1 is the input variable of 

the linkage. The homogeneous transformation matrices relating a link with the adjoining 

link are as follows: 

 

 

   

    ……………………………………………….. (11) 

 

 

 

………………………………………. (12) 

 

3 3 3 3

3

3 3 3 3

1 0 0 0

a cos cos 0 sin
A

a sin sin 0 cos

0 0 1 0

 
 

   
    
 
 

   …………………………………………. (13) 

4 4 4 4

4

4 4 4 4

1 0 0 0

a cos cos 0 sin
A

a sin sin 0 cos

0 0 1 0

 
 

    
   
 

 

  …………………………………………  (14) 

5 5

5

5 5

1 0 0 0

0 cos 0 sin
A

0 sin 0 cos

0 0 1 0

 
 

  
   
 
 

      …………………………………………………... (15) 
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6
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

   
                                                                       

        
   

1 1

1

1 1

1

1 0 0 0

0 cos 0 sin
A

0 sin 0 cos

s 0 1 0

 
 

  
   
 
 

2 2 2 2

2

2 2 2 2

1 0 0 0

a cos cos 0 sin
A

a sin sin 0 cos

0 0 1 0
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   
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6 6 6 6

6

6 6 6 6

6

1 0 0 0

a cos cos sin 0
A

a sin sin cos 0

d 0 0 1

 
 

    
   
 
 

  ………………………………………….. (16) 

And, 

1 2 3 4 5 6A A A A A A I             …………………………………………………………… (17) 

Multiplication of matrices as per equation 17 was done with help of MATLAB. The final 

product matrix (4X4) contains many complex elements with large terms. This product 

matrix when equated to identity matrix (4X4), generates twelve scalar equations. Since 

many equations contain large terms, their further reduction becomes difficult and hence 

does not result in any feasible solution. Since the mechanism’s mobility is already proved by 

practically manufacturing the mechanism [6], another attempt based on the work of Dr. 

Vladim’r Brat’s [5] work was made for the kinematic description of the mechanism. 

Kinetic equation of the mechanism can be written as: 

 32 21 16 34 45 56A  A  A A  A  A      ……………………………………………… (18) 

Where, ijA is the extended transformation matrix of the motion of the link i with respect to 

link j. 

Equation (18) indicates that an arbitrary point of the member (3) (Drum), moves on the 

same trajectory with respect to the frame regardless  of whether the motion of member (3) 

is described by the member sequence (6), (1), (2), (3)  OR (6), (5), (4), (3). 

For the individual members coordinate systems (Xi, Yi, Zi), i = 1, 2, ….,6 are assigned as 

shown in figure 4. The transformation matrices for each link with respect to the adjoining 

link will be as follows; 

16 16

16 16

16

cos sin 0 0

sin cos 0 0
A

0 0 1 0

0 0 0 1

 

 

 
 

 
 
 
 

             ……………………………………….. (19a)  

21 21

21

21 12

1 0 0 0

0 cos sin 0
A  = 

0 sin cos 0

0 0 0 1

 

 

 
 
 
 
 
 

            ……………………………………….. (19b) 
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32 32

32

32 32

cos 0 sin 0

0 1 0 0
A  = 

sin 0 cos 0

0 0 1a

 

 

 
 
 
 
 
 

         ………………………………………... (19c) 

34 34

34 

34 34

1 0 0 0 1 0 0 0

0 1 0 0 0 cos sin 0
A = 

0 0 1 0 0 sin cos 0

0 0 0 1 0 0 1a

 

 

   
   


   
    
   
   

   …………………….. (19d) 

45 45

45

45 45

cos 0 sin 0

0 1 0 0
A  = 

sin 0 cos 0

0 0 0 1

 

 

 
 
 
 
 
 

           ……………………………………….. (19e) 

56 56

56 56

56

cos sin 0 0

sin cos 0 0
A  = 

0 0 1 0

0 3 0 1a

 

 

 
 

 
 
 

  

           ………………………………..………. (19f) 

Where: 

16  = rotation of member (1) with respect to member (6) about Z1 

21  = rotation of member (2) with respect to member (1) about Z2 

32  = rotation of member (3) with respect to member (2) about Z3 

34  = rotation of member (3) with respect to member (4) about Z4 

45 = rotation of member (4) with respect to member (5) about Z5 

56  = rotation of member (5) with respect to member (6) about Z6 

The configuration shown in figure 4 is the initial position of the mechanism which can also 

be described as follows: 

 16 = 0      21  = 
3

  

 32 = 0     34 = 2
3

  

 45 = 0     56 = 0 

Also the dimensional characteristic of the mechanism is such that the link lengths shown in 

figure 4 are: 
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a2 = a3 = a4 = a   and a6 = 3a  

Substituting the initial position values in equation (19) and substituting equation (19a) to 

equation (19f) in equation (18) product matrices of the following form is obtained. 

    
4 4 4 4X X

a b  

By comparing the corresponding terms twelve scalar equations are obtained: 

32 16 32 21 16 45 56cos cos sin sin sin cos cos        ………………………..………….. (20) 

32 16 32 21 16 45 56cos sin sin sin cos cos sin        ………………………………………. (21) 

32 21 45sin cos sin     ………………………………………………………….……………….…. (22) 

21 16 34 56 34 45 56cos sin cos sin sin sin cos          ………………..………………… (23) 

21 16 34 56 34 45 56cos cos cos cos sin sin sin         ……………..……………………. (24) 

21 34 45sin sin cos    ……………………………………………………………….…………………. (25) 

32 16 32 21 16 34 56 34 45 56sin cos cos sin sin sin sin cos sin cos             …. (26) 

32 16 32 21 16 34 56 34 45 56sin sin cos sin cos sin cos cos sin sin            ……. (27) 

32 21 34 45cos cos cos cos      ……………………………………………………..…………..… (28) 

21 16 45 56sin sin sin cos    ………………………………………………………..……………….. (29) 

21 16 45 56sin cos sin sin 3    ………………………………………………………………..….. (30) 

21 45cos cos 
……………………………………….………………………………………………….…. (31) 

Equations (20) to (31) are useful to find out rotation of angles 21, 32, 34, 45, 56 and      as a 

function of input angle 16 . Dependence of the remaining angles upon the input angle 16 is 

as follows: 

21 16
3sin cos

2
 

 
  
 

………………………………………………………….. (32a) 

  2

21 16
1cos 4 3cos

2
    …………………………………………..……..(32b) 

45 2

16

1cos
4 3cos







………………………………………………....... (33a) 

16
45 2

16

3 sin
sin

4 3cos








 ………………………………..……….. (33b) 
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  2

34 16
3cos 1 cos

2
    …………………………………….…………. (34a) 

2

34 16 16
3sin cos 4 3cos

2
  

 
   

 
………………………………. (34b) 

   2 2

32 16 16cos 3cos 2 4 3cos      ……………………………… (35a) 

   2

32 16 16sin 2 3 sin 4 3cos      ………………………………. (35b) 

2

56 16 16cos cos 4 3cos   …………………………………..…………. (36a) 

2

56 16 16sin 2sin 4 3cos      ………………………………….. (36b) 

With the help of above equations change in positions of other links with respect to change 

in position of input link (1) can be determined and is tabulated below: 

Table 2: Positions Of Links With Respect To Change In Position Of Input Link 1 

Angle in Degrees 

16  0 90 180 270 360 

21  60 0 -60 0 60 

34  -120 0 120 0 -120 

32  0 -120 0 120 0 

45  0 -60 0 60 0 

56  0 -90 -180 -270 -360 

The results tabulated above are represented graphically in figures 5 to 7. 

 

Figure 5 
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Figure 6 

 

Figure 7 

CONCLUSION: 

A mixing machine described here employs a very interesting mechanism. Attempt is made 

here to describe general kinematics of the six link mechanism involving only revolutes, using 

matrix method. As discussed here that a spatial mechanism containing only revolutes is 

derived from the seven link kinematics chain. However mechanism described here has only 
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six links including the fixed base. If the link lengths are selected arbitrary, then the 

mechanism will result in immobility with no degrees of freedom. Mobility of the mechanism 

is because of specific linear dimensions only. The mobility of the mechanism is proved with 

this kinematics description. In case of immobility of the mechanism, equations (20) to (31) 

would have produced contradictory results. Additionally, mobility can also be proved with 

the help of CAD software & also by actually making the working model of the machine. 
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