SOME COMMON FIXED POINT THEOREMS FOR TWO PAIRS OF WEAKLY COMPATIBLE SELF-MAPS IN METRIC SPACES

Rinku*, Ranbir Singh

Department of Mathematics

Baba Masthnath University

Asthal Bohar, Rohtak – 124021

rinkumalik.1999@gmail.com, ranbirkadian26@gmail.com

(*Corresponding Author)

ABSTRACT: In the present manuscript, we shall prove common fixed point theorems for two pairs of weakly compatible self mappings with E.A. property and (CLR) property. Our results extends and unifies some results present in the literature.

Keywords: metric space, weakly compatible mapping, E.A. property, (CLR) property.

2020 MSC: 47H10, 54H25.

1. INTRODUCTION

Fixed point theory is one of the most fruitful and applicable topics of nonlinear analysis, which is widely used not only in other mathematical theories, but also in many practical problems of natural Sciences and Engineering. The Banach contraction mapping principle is indeed the most popular result of metric fixed point theory. This principle has many applications in several domains, such as differential equations, functional equations, integral equations, economics, wild life, and several others.

Branciari gave an integral version of the Banach contraction principles and proved fixed point theorem for a single-valued contractive mapping of integral type in metric space. Afterwards many researchers extended the result of Baranciari and obtained fixed point and common fixed point theorems for various contractive conditions of integral type on different spaces. Now, we recollect some known definitions and results from the literature which are helpful in the proof of our main results.

ISSN: 2278-6236

Definition1.1: A coincidence point of a pair of self-mapping $A, B: X \to X$ is a point $x \in X$ for which Ax = Bx.

A common fixed point of a pair of self-mapping $A, B: X \to X$ is a point $x \in X$ for which Ax = Bx = x. Jungck initiated the concept of weakly compatible maps to study common fixed point theorems.

Definition1.2: A pair of self-mapping $A, B: X \to X$ is weakly compatible if they commute at their coincidence points, that is, if there exists a point $x \in X$ such that ABx = BAx whenever Ax = Bx.

In the study of common fixed points of weakly compatible mappings, we often require the assumption of completeness of the space or subspace or continuity of mappings involved besides some contractive condition. Aamri and Moutawakil [1] introduced the notion of E.A. property, which, requires only the closedness of the subspace and Liu *et al.* extended the E.A. property to common the E.A. property as follows:

Definition 1.3: Let(X,d) be a metric space and $A,B,P,Q:X\to X$ be four self-maps. The pairs (A,Q) and (B,P) satisfy the common E.A. property if there exist two sequence $\{x_n\}$ and $\{y_n\}$ in X such that $\lim_{n\to\infty}Ax_n=\lim_{n\to\infty}Qx_n=\lim_{n\to\infty}By_n=\lim_{n\to\infty}Py_n=s\in X$.

Sintunavarat and Kumam introduced the notion of the (CLR) property, which never requires any condition on closedness of the space or subspace and Imdad *et al.* introduced the common(CLR) property ehich is an extension of the (CLR) property.

Definition1.4: Let (X,d) be a metric space and $A,B,P,Q:X\to X$ be four self-maps. The pairs (A,Q) and (B,P) satisfy the common limit range property with respect to mappings Q and P denoted by (CLR_{PQ}) if there exists two sequences $\{x_n\}$ and $\{y_n\}$ in X such that

$$\lim_{n\to\infty}Ax_n=\lim_{n\to\infty}Qx_n=\lim_{n\to\infty}By_n=\lim_{n\to\infty}Py_n=s\in QX\cap PX.$$

Lemma1.5: Let (X,d) be a metric space and $\{x_n\}$ be a sequence in X. Then $\{x_n\}$ converges to x if and only if $|d(x_n,x)| \to 0$ as $n \to \infty$, where $m \in \mathbb{N}$.

Jungck [4] introduced the concept of weakly compatible maps as follows:

ISSN: 2278-6236

Definition1.6: Let f and g be two self-mappings of a metric space (X, d). Then a pair (f, g) is said to be weakly compatible if they commute at coincidence points.

In 2002, Aamari and Moutawakil [1] introduced the notion of E.A. property as follows.

Definition1.7: Let (X,d) be a complete metric space and $T: X \to X$ be a contraction mapping, i.e. $d(Tx,Ty) \le \alpha d(x,y) \ \forall \ x,y \in X$ and $\alpha \in [0,1)$ then T has a unique fixed point.

Definition 1.8: Let f and g be two self-mappings of a metric space (X,d). Then a pair (f,g) is said to satisfy E.A. property if there exists a sequence $\{x_n\}$ in X such that $\lim_{n\to\infty} fx_n = \lim_{n\to\infty} gx_n = fx$ for some $x\in X$.

Example 1.9: Suppose X = [2,4] with $\delta(\alpha, \beta) = e^{\wedge}(|\alpha - \beta|) \ \forall \ \alpha, \beta \in X$.

Define $G(\alpha) = \{ 2 \text{ if } \alpha = 2, 2\alpha/3 \text{ if } 3 < \alpha \le 4 \}$ and

$$I(\alpha) = \{ 2 \text{ if } 2 \le \alpha \le 3, \alpha + 3/3 \text{ if } 3 \le \alpha < 4 \}.$$

Take a sequence $\{\alpha_k\}$ as $\alpha_k=3+1/k$ for $k\geq 0$. Then $G\alpha_k=G(3+1/k)=2(3+1/k)/3=2+1/k=2$ as $k\to\infty$ and $I\alpha_k=I(3+1/k)=(3+1/k+3)/3=(6/3+1/3k)=2+1/k=2$ as $k\to\infty$. This gives $G\alpha_k=I\alpha_k=2\in X$ as $k\to\infty$. This gives (G,I) satisfies E.A. property.

Definition 1.10: Let X be a non-empty set. Then f and g over a metric space (X,d) satisfy CLR property if $\lim_{n\to\infty} f(x_n) = \lim_{n\to\infty} g(x_n) = g(t)$ for some $t\in X$.

Example 1.11: Let $X=\mathbb{R}$. Define the mapping $d\colon X\times X\to\mathbb{R}$ by $d(z_1,z_2)=2|z_1,z_2|$ for all $z_1,z_2\in X$. Then (X,d) is a metric space. Define S and $T\colon X\to X$ by Sz=z and Tz=2z for all $z\in X$, respectively. Consider a sequence $\{z_n\}=\{\frac{1}{n}\}(n\in\mathbb{N})$ in X. Then

 $\lim_{n\to\infty} Sz_n = \lim_{n\to\infty} z_n = 0$ and $\lim_{n\to\infty} Tz_n = \lim_{n\to\infty} 2z_n = 0$.

Thus, S and T satisfy CLR_S property.

The following definitions will be used in sequel:

ISSN: 2278-6236

Let Φ_1 be the set of all functions $\varphi: [0, \infty) \to [0, \infty)$ satisfying the following conditions:

- 1. ϕ is continuous on $[0, \infty)$.
- 2. ϕ is non-decreasing.
- 3. $\phi(0) = 0$ and $\phi(t) > 0$ for all t > 0.

Let Φ_3 be the set of all functions $\alpha:[0,\infty)\to[0,1)$ satisfying the following conditions:

- 1. α is measurable or continuous on $[0, \infty)$.
- 2. $\alpha(0) = 0$ and $\alpha(t) < 1$ for every t > 0.
- 3. Optionally, $\sup_{t>0} \alpha(t) = \kappa < 1$ (a uniform contraction bound) or α is non-decreasing.

2. Fixed Point Theorems for Weakly Compatible Mappings with E.A. Property

Now, we prove common fixed point theorems for two pairs of weakly compatible self-maps along with E.A. property.

Theorem 2.1: Let A, B, S and T be self mapping in a metric space (X, d) such that

- (C1) $SX \subset BX$ and $TX \subset AX$
- (C2) (A, S) and (B, T) are weakly compatible;

(C3)
$$\int_0^{d(Sx,Ty)} \varphi(t)dt \le \alpha(d(x,y)) \int_0^{M_1(x,y)} \varphi(t)dt, \forall x,y \in X$$

Where $(\phi, \alpha) \in \Phi_1 \times \Phi_3$ and for all $x, y \in X$.

$$\begin{split} M_{1}(x,y) &= \max\{d(Ax,By), \quad d(Ax,Sx), d(By,Ty), \quad \frac{1}{2}[d(Ax,Ty) + d(Sx,By)], \\ td(Ax,Sx), \frac{1+d(Ax,By)}{1+d(Ax,Sx)}d(By,Ty), \quad \frac{d^{2}(Ax,Sx)}{1+d(Sx,Ty)}, \quad \frac{d^{2}(By,Ty)}{1+d(Sx,Ty)}, \quad \frac{1+d(Ax,Ty)+d(Sx,By)}{1+d(Ax,By)+d(Sx,Ty)}d(Ax,Sx), \\ \frac{1+d(Ax,Ty)+d(Sx,By)}{1+d(Ax,By)+d(Sx,Ty)}d(By,Ty). \end{split}$$

(C4) The pairs (A, S) and (B, T) satisfy the E.A. property.

Suppose that any one of AX, BX, SX, TX is a closed subspace of X. Then A, B, S and T have a unique common fixed point.

Proof. Suppose that (A, S) satisfies the E.A. property. Then there exists a sequence $\{x_n\}$ in X such that $Ax_n = Sx_n = z$ for some $z \in X$.

ISSN: 2278-6236

Since $SX \subset BX$, there exists a sequence $\{y_n\}$ in X such that $Sx_n = By_n$. Hence, $\lim_{n \to \infty} By_n = z$.

We shall show that $\lim_{n\to\infty} By_n = z$. We shall show that $\lim_{n\to\infty} Ty_n = z$. Let $\lim_{n\to\infty} Ty_n = t$ $\neq z$.

Put
$$x = x_n, y = y_n$$

$$\int_0^{d(Sx_n,Ty_n)} \varphi(t)dt \le \alpha(d(x,y)) \int_0^{M_1(x,y)} \varphi(t)dt, \forall x,y \in X.$$

$$M_1(x_n, y_n) = \max\{\mathsf{d}(\mathsf{A}x_n, \mathsf{B}y_n), \mathsf{d}(\mathsf{A}x_n, \mathsf{S}x_n), \mathsf{d}(\mathsf{B}y_n, \mathsf{T}y_n), \frac{1}{2}[\mathsf{d}(\mathsf{A}x_n, \mathsf{T}y_n) + \mathsf{d}(\mathsf{S}x_n, \mathsf{B}y_n)],$$

$$\frac{1 + d(Ax_n, By_n)}{1 + d(By_n, Ty_n)} d(Ax_n, Sx_n), \qquad \frac{1 + d(Ax_n, By_n)}{1 + d(Ax_n, Sx_n)} d(By_n, Ty_n), \qquad \frac{d^2(Ax_n, Sx_n)}{1 + d(Sx_n, Ty_n)'}, \qquad \frac{d^2(By_n, Ty_n)}{1 + d(Sx_n, Ty_n)'}$$

$$\frac{1+d(Ax_{n},Ty_{n})+d(Sx_{n},By_{n})}{1+d(Ax_{n},By_{n})+d(Sx_{n},Ty_{n})}d(Ax_{n},Sx_{n}),\frac{1+d(Ax_{n},Ty_{n})+d(Sx_{n},By_{n})}{1+d(Ax_{n},By_{n})+d(Sx_{n},Ty_{n})}d(By_{n},Ty_{n})\}$$

Now, $\lim_{n \to \infty} Ax_n = \lim_{n \to \infty} Sx_n = \mathbf{z} = \lim_{n \to \infty} By_n$ and $\lim_{n \to \infty} Ty_n = t$.

$$M_1(x_n, y_n) = \max\{d(z, z), d(z, z), d(z, t), \frac{1}{2}[d(z, t) + d(z, z)], \frac{1 + d(z, z)}{1 + d(z, t)}d(z, z),$$

$$\frac{1+d(z,z)}{1+d(z,z)}d(z,t), \frac{d^2(z,z)}{1+d(z,t)}, \frac{d^2(z,t)}{1+d(z,t)}, \frac{1+d(z,t)+d(z,z)}{1+d(z,t)+d(z,t)}d(z,z), \frac{1+d(z,t)+d(z,z)}{1+d(z,z)+d(z,t)}d(z,t)\}$$

=
$$\max \{0, 0, d(z, t), 0, d(z, t), 0, d^2(z, t), d(z, t)\}$$

$$=d(z,t),$$

where,

$$\lim_{n\to\infty} \int_0^{d(Sx_n,Ty_n)} \varphi(t)dt \leq \alpha(d(x_n,y_n) \int_0^{M_1(x_n,y_n)} \varphi(t)dt$$

$$\int_{0}^{d(Sz,Tz)} \varphi(t)dt \leq \alpha(d(z,t) \int_{0}^{M_{1}(x_{n},y_{n})} \varphi(t)dt$$

$$\leq \alpha(d(z,t)\int_0^{d(z,t)}\varphi(t)dt,$$

which is contradiction.

Therefore, t = z. i.e. $\lim_{n\to\infty} Ty_n = z$.

Suppose that BX is a closed space of X. Then there exists $u \in X$ such that z = Bu.

ISSN: 2278-6236

Subsequently, we have

$$\lim_{n\to\infty} Ty_n = \lim_{n\to\infty} Sx_n = \lim_{n\to\infty} Ax_n = \lim_{n\to\infty} By_n = z = Bu.$$

Now, we shall show that Tu = Bu.

Let $Tu \neq Bu$.

From (C3), we have

$$\int_0^{d(Sx_n,Ty_n)} \varphi(t)dt \leq \alpha(d(x_n,y_n)) \int_0^{M_1(x_n,y_n)} \varphi(t)dt, \forall x,y \in X$$

Letting $n \rightarrow \infty$

$$\textstyle \lim_{n \to \infty} \int_0^{d(Sx_n,z)} \varphi(t) dt \leq \alpha(d(x_n,y_n)) \int_0^{M_1(x_n,y_n)} \varphi(t) dt, \, \forall x,y \in X.$$

$$\int_{0}^{d(Sx_{n},Bu)} \varphi(t)dt \le \alpha(d(x_{n},y_{n})) \int_{0}^{M_{1}(x_{n},y_{n})} \varphi(t)dt, \tag{2.1}$$

where,

$$M_1(x_n, y_n) = \max\{d(Ax_n, By_n), d(Ax_n, Sx_n), d(By_n, Ty_n), \frac{1}{2}[d(Ax_n, Ty_n) + d(Sx_n, By_n)], d(Ax_n, Sx_n), d(By_n, Ty_n), \frac{1}{2}[d(Ax_n, Ty_n) + d(Sx_n, By_n)], d(Ax_n, Sx_n), d(By_n, Ty_n), \frac{1}{2}[d(Ax_n, Ty_n) + d(Sx_n, By_n)], d(Ax_n, Ty_n), d$$

$$\frac{1+d(Ax_{n},By_{n})}{1+d(By_{n},Ty_{n})}d(Ax_{n},Sx_{n}), \qquad \frac{1+d(Ax_{n},By_{n})}{1+d(Ax_{n},Sx_{n})}d(By_{n},Ty_{n}), \qquad \frac{d^{2}(Ax_{n},Sx_{n})}{1+d(Sx_{n},Ty_{n})'} \qquad \frac{d^{2}(By_{n},Ty_{n})}{1+d(Sx_{n},Ty_{n})'}$$

$$\frac{\frac{1+d(Ax_{n},Ty_{n})+d(Sx_{n},By_{n})}{1+d(Ax_{n},By_{n})+d(Sx_{n},Ty_{n})}}{d(Ax_{n},Sx_{n})}, \frac{\frac{1+d(Ax_{n},Ty_{n})+d(Sx_{n},By_{n})}{1+d(Ax_{n},By_{n})+d(Sx_{n},Ty_{n})}}{d(By_{n},Ty_{n})}\}$$

$$= \max\{d(\mathsf{A}x_n, Bu), \quad d(\mathsf{A}x_n, Sx_n), \quad d(Bu, Tu), \quad \frac{1}{2}[d(\mathsf{A}x_n, Ty_n) + d(Sx_n, By_n)],$$

$$\frac{1+d(Ax_n,By_n)}{1+d(By_n,Ty_n)}d(Ax_n,Sx_n), \qquad \frac{1+d(Ax_n,By_n)}{1+d(Ax_n,Sx_n)}d(By_n,Ty_n), \qquad \frac{d^2(Ax_n,Sx_n)}{1+d(Sx_n,Tu)}, \qquad \frac{d^2(Bu,Tu)}{1+d(Sx_n,Tu)}$$

$$\frac{\frac{1+d(Ax_{n},Tu)+d(Sx_{n},Bu)}{1+d(Ax_{n},Bu)+d(Sx_{n},Tu)}}{d(Ax_{n},Sx_{n})}, \frac{\frac{1+d(Ax_{n},Tu)+d(Sx_{n},Bu)}{1+d(Ax_{n},Bu)+d(Sx_{n},Tu)}}{d(By_{n},Tu)}$$

 $= \max \{0,0,d(Bu,Tu),0,0,d(Bu,Tu),0,d^2(Bu,Tu),0,d(Bu,Tu)\}$

$$=d(z,Tu) \tag{2.2}$$

Equation (2.1) and (2.2) leads to contradiction. Therefore, Tu = z = Bu.

Since B and T are weakly Compatible, we have Btu = TBu. Hence, TTu = TBu = Btu = BBu.

ISSN: 2278-6236

Since $TX \subset AX$, there exists, $v \in X$ such that Tu = Av.

Now, we claims that Av = Sv. Let $Av \neq Sv$.

$$M_{1}(v,u) = \max\{d(Av,Bu), d(Av,Sv), d(Bu,Tu), \frac{1}{2}[d(Av,Tu) + d(Su,Bu)], \frac{1+d(Av,Bu)}{1+d(Bu,Tu)}d(Av,Sv), \frac{1+d(Av,Bu)}{1+d(Av,Sv)}d(Bu,Tu), \frac{d^{2}(Av,Sv)}{1+d(Sv,Tu)'}, \frac{d^{2}(Bu,Tu)}{1+d(Sv,Tu)'}, \frac{d^{2}(Bu,Tu)}{1+d(Sv,Tu)}, \frac{d^{2}($$

$$\frac{\frac{1+d(Av,Tu)+d(Sv,Bu)}{1+d(Av,Bu)+d(Sv,Tu)}}{d(Av,Sv)}, \frac{\frac{1+d(Av,Tu)+d(Sv,Bu)}{1+d(Av,Bu)+d(Sv,Tu)}}{d(Bu,Tu)}\}$$

$$= \max\{0, d(Av, Sv), 0, 0, d(Av, Sv), 0, d^{2}(Av, Sv), 0, d(Av, Sv), 0\}$$

$$=d(Av,Sv) = d(Tu,Sv)$$

Thus from (C3), we have

$$\begin{split} \int_0^{d(Sv,Tu)} \varphi(t) dt & \leq \alpha (\mathsf{d}(\mathsf{v},\mathsf{u}) \! \int_0^{M_1(v,u)} \varphi(t) dt, \, \forall x,y \in X. \\ & \leq \alpha (\mathsf{v},\mathsf{u}) \! \int_0^{d(Sv,Tu)} \varphi(t) dt. \end{split}$$

Which is a contradiction. Therefore, Sv = Tu = Av.

Thus, we have Tu = Bu = Sv = Av. The weak compatibility of A and S implies that ASv = SAv = SSv = AAv. Now, we claim that Tu is the common fixed point of A, B, S and T. Suppose that $TTu \neq Tu$. From (C3), we have d(Tu, TTu) = d(Sv, TTu)

$$\int_0^{d(Sv,TTu)} \varphi(t)dt \le \alpha(\mathsf{d}(\mathsf{v},\mathsf{Tu})) \int_0^{M_1(v,Tu)} \varphi(t)dt, \, \forall x,y \in X.$$

and

$$\begin{aligned} M_{1}(v,Tu) &= \max\{d(Av,Btu),d(Av,Sv),d(BTu,TTu), \quad \frac{1}{2}[d(Av,TTu)+d(Sv,BTu)], \\ \frac{1+d(Av,BTu)}{1+d(BTU,TTu)}d(Av,Sv), \quad \frac{1+d(Av,BTu)}{1+d(Av,Sv)}d(BTu,TTu), \quad \frac{d^{2}(Av,Sv)}{1+d(Sv,TTu)'}, \\ \frac{d^{2}(BTu,TTu)}{1+d(Sv,TTu)}, \quad \frac{1+d(Av,TTu)+d(Sv,BTu)}{1+d(Av,BTu)+d(Sv,TTu)}d(Av,Sv), \\ \frac{1+d(Av,TTu)+d(Sv,BTu)}{1+d(Av,BTu)+d(Sv,TTu)}d(BTU,TTu) \end{aligned}$$

$$= \max\{d(Av, BTu), d(Av, Sv), d(BTU, TTu), 0, 0, 0, 0, 0, 0, 0, 0\}$$

$$= d(Av, BTu) = d(Tu, TTu).$$

ISSN: 2278-6236

Thus, from equation (3) leads to a contradiction. Therefore, Tu = TTu = BTu.

Hence Tu is the common fixed point of B and T. Similarly, we prove that Sv is the common fixed point of A and S. Since Tu = Sv, Tu is the common fixed point of A, B, S and T.

The proof is similar when AX is assumed to be a closed subspace of X. The cases in which TX or SX is a complete subspace of X are similar to the cases in which AX or BX, respectively is complete subspaces of X. Since $TX \subset AX$ and $SX \subset BX$.

Finally, for uniqueness, let p and q ($p \neq q$) be two common fixed points of A, B, S and T.

From (C3), we have

$$\int_0^{d(Sp,Tq)} \varphi(t)dt \le \alpha(d(\mathsf{p},\mathsf{q})) \int_0^{M_1(p,q)} \varphi(t)dt, \forall x,y \in X. \tag{2.4}$$

Where,

$$M_1(p,q) = \max\{d(Ap,Bq),d(Ap,Sp),d(Bq,Tq),\frac{1}{2}[d(Ap,Tq)+d(Sp,Bq)],$$

$$\frac{1+d(Ap,Bq)}{1+d(Bq,Tq)}d(Ap,Sp), \qquad \frac{1+d(Ap,Bq)}{1+d(Ap,Sp)}d(Bq,Tq), \qquad \frac{d^2(Ap,Sp)}{1+d(Sp,Tq)'}, \qquad \frac{d^2(Bq,Tq)}{1+d(Sp,Tq)'}$$

$$\frac{\frac{1+d(Ap,Tq)+d(Sp,Bq)}{1+d(Ap,Bq)+d(Sp,Tq)}}{d(Ap,Sp)},\frac{\frac{1+d(Ap,Tq)+d(Sp,Bq)}{1+d(Ap,Bq)+d(Sp,Tq)}}{d(Bq,Tq)}\}$$

$$= \max\{d(Ap, Bq), d(Ap, Sp), d(Bq, Tq), 0, 0, 0, 0, 0, 0, 0\}$$

$$=d(p,q).$$

From equation (2.4) which leads to contradiction. Therefore, p=q. Hence A,B,S and T have a unique common fixed point. This completes the proof.

If A = B and S = T in the above Theorem, we get the following:

Corollary 2.2: Let A and S be two self-mappings of a complex valued metric space (X,d) satisfying $SX \subset Ax$,

$$\int_0^{d(Sx,Ty)} \varphi(t)dt \leq \alpha(\mathsf{d}(\mathsf{x},\mathsf{y})) \int_0^{M_1(x,y)} \varphi(t)dt, \forall x,y \in X$$

ISSN: 2278-6236

$$\begin{split} M_{1}(\mathbf{x}, \mathbf{y}) &= \max\{d(Ax, By), d(Ax, Sx), d(By, Ty), \frac{1}{2} \left[(d(Ax, Ty) + d(Sx, By) \right], \\ \frac{1 + d(Ax, By)}{1 + d(By, Ty)} d(Ax, Sx), & \frac{1 + d(Ax, By)}{1 + d(Ax, Sx)} d(By, Ty), & \frac{d^{2}(Ax, Sx)}{1 + d(Sx, Ty)'}, & \frac{d^{2}(By, Ty)}{1 + d(Sx, Ty)'}, \\ \frac{1 + d(Ax, Ty) + d(Sx, By)}{1 + d(Ax, By) + d(Sx, Ty)} d(By, Ty) \} \end{split}$$

The pair (A, S) is weakly compatible. If one of AX or SX is closed subspaces of X, then A and S have a unique common fixed point.

3. Fixed Point Theorems for Weakly Compatible Mappings with CLR Property

Now, we prove common fixed point theorems for weakly compatible mappings with CLR property.

Theorem 3.1: Let A, B, S and T be four self-mappings of a complex valued metric space (X, d) satisfying (C2), (C3), and (C9) $SX \subset BX$ and the pairs (A, S) satisfies CLR_A property or $TX \subset AX$ and the pair (B, T) satisfies CLR_B property. Then A, B, S and T have a unique common fixed point.

Proof: Without loss of generality, assume that $SX \subset BX$ and the pairs (A, S) satisfies CLR_A property. Then there exists a sequence $\{x_n\}$ in X s.t. $\lim_{n\to\infty} Ax_n = \lim_{n\to\infty} Sx_n = Ax$ for some $x\in X$. Since $SX\subset BX$, there exists a sequence $\{y_n\}$ in X such that $Sx_n=By_n$.

Hence $\lim_{n\to\infty} By_n = Ax$.

We shall show that $\lim_{n\to\infty} Ty_n = Ax$. Let $\lim_{n\to\infty} Ty_n = z \neq Ax$.

Form (C3) we have

$$\textstyle \int_0^{d(Sx_n,Ty_n)} \varphi(t)dt \leq \alpha(\mathsf{d}(x_n,y_n)) \int_0^{M_1(x_n,y_n)} \varphi(t)dt, \, \forall x,y \in X.$$

Letting $n \rightarrow \infty$, we have

$$\int_0^{d(Ax,z)} \varphi(t)dt \le \alpha(\mathsf{d}(x_n,y_n)) \int_0^{M_1(x_n,y_n)} \varphi(t)dt \,, \tag{3.1}$$

where

ISSN: 2278-6236

$$\begin{split} &M_{1}(x_{n},y_{n}) = & \max\{\mathsf{d}(\mathsf{A}x_{n},By_{n}), & \mathsf{d}(\mathsf{A}x_{n},Sx_{n}), \mathsf{d}(\mathsf{B}y_{n},\mathsf{T}y_{n}), & \frac{1}{2}[d(Ax_{n}Ty_{n}) + \mathsf{d}(\mathsf{S}x_{n},\mathsf{B}y_{n})], \\ &\frac{1+d(Ax_{n},By_{n})}{1+d(By_{n},Ty_{n})}d(Ax_{n},\mathsf{S}x_{n}), & \frac{1+d(Ax_{n},By_{n})}{1+d(Ax_{n},Sx_{n})}d(By_{n},Ty_{n}), & \frac{d^{2}(Ax_{n},Sx_{n})}{1+d(Sx_{n},Ty_{n})'}, & \frac{d^{2}(By_{n},Ty_{n})}{1+d(Sx_{n},Ty_{n})}, \\ &\frac{1+d(Ax_{n},Ty_{n}) + d(Sx_{n},By_{n})}{1+d(Ax_{n},By_{n}) + d(Sx_{n},By_{n})}d(Ax_{n},Sx_{n}), & \frac{1+d(Ax_{n},Ty_{n}) + d(Sx_{n},By_{n})}{1+d(Ax_{n},By_{n}) + d(Sx_{n},Ty_{n})}d(By_{n},Ty_{n}) \end{split}$$

Letting limit n tends to infinity.

$$\lim_{n\to\infty} M_1(x_n, y_n) = \lim_{n\to\infty} \max \{d(Ax, Ax), d(Ax, Ax), d(Ax, z), \frac{1}{2}[d(Ax, z) + d(Ax, Ax)], d(Ax, Ax), d(Ax, Ax),$$

$$= \lim_{n \to \infty} \max \left\{ 0, 0, d(Ax, z), \frac{1}{2} d(Ax, z), 0, d(Ax, z), 0, \frac{d^2(Ax, z)}{1 + d(Ax, z)}, 0, d(Ax, z) \right\} \ = \ d(Ax, z).$$

Thus, from equation(3.1) this leads to contradiction. Therefore, Ax=z and hence $\lim_{n\to\infty} Ty_n = Ax$.

Subsequently, we have

$$\lim_{n\to\infty} Ax_n = \lim_{n\to\infty} Sx_n = \lim_{n\to\infty} By_n = \lim_{n\to\infty} Ty_n = Ax = z$$
.

Now, we shall show that Sx = z. Let $Sx \neq z$.

From (C3), we have

$$\textstyle \int_0^{d(Sx_n,Ty_n)} \varphi(t)dt \leq \alpha(\mathsf{d}(\mathsf{x},y_n)) \textstyle \int_0^{M_1(x,y_n)} \varphi(t)dt, \, \forall x,y \in X,$$

where,

$$\begin{split} &M_{1}(x,y_{n}) &= \max\{\mathsf{d}(\mathsf{Ax},\mathsf{B}y_{n}), \quad \mathsf{d}(\mathsf{Ax},\mathsf{Sx}), \quad \mathsf{d}(\mathsf{B}y_{n},Ty_{n}), \quad \frac{1}{2}[d(Ax,Ty_{n})+d(Sx,By_{n})], \\ &\frac{1+d(Ax,By_{n})}{1+d(By_{n},Ty_{n})}d(Ax,Sx), \qquad \frac{1+d(Ax,By_{n})}{1+d(Ax,Sx_{n})}d(By_{n},\mathsf{T}y_{n}), \qquad \frac{d^{2}(Ax,Sx)}{1+d(Sx,Ty_{n})'} \qquad \frac{d^{2}(By_{n},Ty_{n})}{1+d(Sx,Ty_{n})'}, \\ &\frac{1+d(Ax,Ty_{n})+d(Sx,By_{n})}{1+d(Ax,By_{n})+d(Sx,Ty_{n})}d(By_{n},\mathsf{T}y_{n})\} \end{split}$$

ISSN: 2278-6236

$$= \max\{d(z,z), d(z,Sx), d(z,z), \frac{1}{2}[d(z,z) + d(Sx,z)], \frac{1+d(z,z)}{1+d(z,z)}d(z,Sx), \frac{1+d(z,z)}{1+d(z,z)}d(z,z), \frac{d^2(z,Sx)}{1+d(z,z)}d(z,z)\}$$

$$\frac{d^2(z,z)}{1+d(Sx,z)}, \frac{1+d(z,z)+d(Sx,z)}{1+d(z,z)+d(Sx,z)}d(z,z), \frac{1+d(z,z)+d(Sx,z)}{1+d(z,z)+d(Sx,z)}d(z,z)\}$$

$$= \max\{0, d(z, Sx), 0, \frac{1}{2}d(Sx, z), d(z, Sx), 0, d^2(z, Sx), 0, 0, 0\}$$

$$=d(Ax,z)$$

Thus,

$$\int_0^{d(Sx,Ty_n)} \varphi(t)dt \le \alpha(\mathsf{d}(\mathsf{x},y_n)) \int_0^{M_1(x,y_n)} \varphi(t)dt, \ \forall x,y \in X$$

$$\int_0^{d(Sx,z)} \varphi(t)dt \le \alpha(\mathsf{d}(\mathsf{x},y_n)) \int_0^{d(Ax,z)} \varphi(t)dt,$$

a contradiction.

Therefore, Sx = z = Ax.

Since the pair (A, S) is weakly compatible, it follows that Az = Sz. Also, since $SX \subset BX$, there exists $y \in X$ such that z = Sx = By. Now, we show that Ty = z.

Let $Ty \neq z$. From (C3), we have

$$\textstyle \int_0^{d(Sx_n,Ty_n)} \varphi(t)dt \leq \alpha(\operatorname{d}(x_n,y_n)) \int_0^{M_1(x_n,y_n)} \varphi(t)dt, \, \forall x,y \in X.$$

Letting $n \rightarrow \infty$

$$\int_{0}^{d(Ax,z)} \varphi(t)dt \leq \alpha(\mathsf{d}(x_{n},y_{n})) \int_{0}^{M_{1}(x_{n},y_{n})} \varphi(t)dt, \forall \mathsf{x},\mathsf{y} \in \mathsf{X}. \tag{3.2}$$

$$M_1(x_n, y) = \max\{d(Ax_n, By), d(Ax_n, Sx_n), d(By, Ty), \frac{1}{2}[d(Ax_n, Ty) + d(Sx_n, By)],$$

$$\frac{1 + d(Ax_n, By)}{1 + d(By, Ty)} d(Ax_n, Sx_n), \qquad \frac{1 + d(Ax_n, By)}{1 + d(Ax_n, Sx_n)} d(By, Ty), \qquad \frac{d^2(Ax_n, Sx_n)}{1 + d(Sx_n, Ty)'}, \qquad \frac{d^2(By, Ty)}{1 + d(Sx_n, Ty)'}$$

$$\frac{\frac{1+d(Ax_{n},Ty)+d(Sx_{n},By)}{1+d(Ax_{n},By)+d(Sx_{n},Ty)}}{d(Ax_{n},Sx_{n})}, \frac{\frac{1+d(Ax_{n},Ty)+d(Sx_{n},By)}{1+d(Ax_{n},By)+d(Sx_{n},Ty)}}{d(By,Ty)}\}$$

$$= \max\{d(z,z),d(z,Ty), \quad \frac{1}{2}[d(z,Ty)+d(z,z)], \quad \frac{1+d(z,z)}{1+d(z,Ty)}d(z,z), \quad \frac{1+d(z,z)}{1+d(z,z)}d(z,Ty), \quad \frac{1}{2}[d(z,Ty)+d(z,z)], \quad \frac{1}{2}[d(z,Ty$$

$$\frac{d^2(z,z)}{1+d(z,Ty)}, \frac{d^2(z,Ty)}{1+d(z,z)}, \frac{1+d(z,Ty)+d(z,z)}{1+d(z,z)+d(z,Ty)}d(z,z), \frac{1+d(z,Ty)+d(z,z)}{1+d(z,z)+d(z,Ty)}d(z,Ty)\} = \mathsf{d}(\mathsf{z},\mathsf{Ty})$$

ISSN: 2278-6236

Thus from equation (3.2)

$$\int_0^{d(Ax,z)} \varphi(t)dt \le \alpha(\mathsf{d}(x_n,y)) \int_0^{d(z,Ty)} \varphi(t)dt$$

Which is a contradiction. Thus, z = Ty = By.

Since the pair (B,T) is weakly compatible, it follows that Tz=Bz. Now, we claim that Sz=Tz.

Let $Sz \neq Tz$. From (C3) we have

$$\int_{0}^{d(Sz,Tz)} \varphi(t)dt \le \alpha(\mathsf{d}(\mathsf{z},\mathsf{z}) \int_{0}^{M_{1}(z,z)} \varphi(t)dt, \tag{3.3}$$

where,

$$\begin{split} M_1(z,z) &= \max\{\mathsf{d}(\mathsf{Az},\mathsf{Bz}), \ \mathsf{d}(\mathsf{Az},\mathsf{Sz}), \ \mathsf{d}(\mathsf{Bz},\mathsf{Tz}), \ \frac{1}{2}[\mathsf{d}(\mathsf{Az},\mathsf{Tz})+\mathsf{d}(\mathsf{Sz},\mathsf{Bz})], \ \frac{1+d(Az,Bz)}{1+d(Bz,Tz)}d(Az,Sz), \\ \frac{1+d(Az,Bz)}{1+d(Az,Sz)}d(Bz,Tz), \ \frac{d^2(Az,Sz)}{1+d(Sz,Tz)}, \ \frac{d^2(Bz,Tz)}{1+d(Sz,Tz)}, \ \frac{1+d(Az,Tz)+d(Sz,Bz)}{1+d(Az,Bz)+d(Sz,Tz)}d(Az,Sz), \\ \frac{1+d(Az,Tz)+d(Sz,Bz)}{1+d(Az,Bz)+d(Sz,Tz)}d(Bz,Tz)\} \end{split}$$

$$= \max\{d(Sz,Tz),d(Sz,Sz),d(Tz,Tz), \quad \frac{1}{2}[d(Sz,Tz)+d(Sz,Tz)], \quad \frac{1+d(Sz,Tz)}{1+d(Tz,Tz)}d(Sz,Sz), \\ \frac{1+d(Sz,Tz)}{1+d(Sz,Sz)}d(Tz,Tz), \quad \frac{d^2(Sz,Sz)}{1+d(Sz,Tz)}, \quad \frac{d^2(Tz,Tz)}{1+d(Sz,Tz)}, \quad \frac{1+d(Sz,Tz)+d(Sz,Tz)}{1+d(Sz,Tz)+d(Sz,Tz)}d(Sz,Sz), \\ \frac{1+d(Sz,Tz)+d(Sz,Tz)}{1+d(Sz,Tz)+d(Sz,Tz)}d(Sz,Tz)\} = d(Sz,Tz)$$

Thus, from (3.3), we have

$$\int_0^{d(Sz,Tz)} \varphi(t)dt \le \alpha(\mathsf{d}(\mathsf{z},\mathsf{z})) \int_0^{M_1(z,z)} \varphi(t)dt = 0$$

Which is a contradiction. Therefore, Sz = Tz, i.e. Az = Sz = Tz = Bz.

Now we shall show that z = Tz. Let $z \neq Tz$. From (C3), we have

$$\int_0^{d(z,Tz)} \varphi(t)dt = \int_0^{d(Sx,Tz)} \varphi(t)dt \le \alpha(x,z) \int_0^{M_1(x,z)} \varphi(t)dt, \tag{3.4}$$

where,

ISSN: 2278-6236

 $M_1(x,z) = \max\{d(Ax,Bz), d(Ax,Sz), d(Bx,Tz), \frac{1}{2}[d(Ax,Tz) + d(Sx,Bz)], \frac{1+d(Ax,Bz)}{1+d(Bz,Tz)}d(Ax,Sx),$

ISSN: 2278-6236

Impact Factor: 7.624

$$\frac{1 + d(Ax,Bz)}{1 + d(Ax,Sx)} d(Bz,Tz), \qquad \frac{d^2(Ax,Sx)}{1 + d(Sx,Tz)'}, \qquad \frac{d^2(Bz,Tz)}{1 + d(Sx,Tz)'}, \qquad \frac{1 + d(Ax,Tz) + d(Sx,Bz)}{1 + d(Ax,Bz) + d(Sx,Tz)} d(Ax,Sx),$$

$$\frac{1+d(Ax,Tz)+d(Sx,Bz)}{1+d(Ax,Bz)+d(Sx,Tz)}d(Bz,Tz)\}$$

$$= \max\{\mathsf{d}(\mathsf{z},\mathsf{Tz}) \ , \ \mathsf{d}(\mathsf{z},\mathsf{Tz}), \mathsf{d}(\mathsf{z},\mathsf{Tz}), \frac{1}{2}[d(z,Tz) + d(z,Bz)], \ \frac{1 + d(z,Bz)}{1 + d(Bz,Tz)}d(z,z), \ \frac{1 + d(z,Bz)}{1 + d(z,z)}d(Bz,Tz), \ \frac{1 + d(z,Bz)}{1 + d(z,z)}d(Bz,Tz), \ \frac{1 + d(z,Bz)}{1 + d(z,Bz)}d(Bz,Tz), \ \frac{1$$

$$\frac{d^2(z,z)}{1+d(z,Tz)}, \frac{d^2(Bz,Tz)}{1+d(z,Tz)}, \frac{1+d(z,Tz)+d(z,Bz)}{1+d(z,Bz)+d(z,Tz)}d(z,z), \frac{1+d(z,Tz)+d(z,Bz)}{1+d(z,Bz)+d(z,Tz)}d(Bz,Tz)\}$$

$$= \max\{d(z,Tz), d(z,Tz), d(z,Tz), d(z,Tz), 0,0,0,0,0,0\}$$

$$=d(z,Tz)$$

Thus, from (3.4)

$$\textstyle \int_0^{d(z,Tz)} \varphi(t) dt = \int_0^{d(Sx,Tz)} \varphi(t) dt \leq \alpha(\mathbf{x},\mathbf{z}) \textstyle \int_0^{d(z,Tz)} \varphi(t) dt$$

Which is a contradiction.

Therefore, z = Tz = Bz = Az = Sz. Hence z is the common fixed point of A, B, S and T.

Finally, for uniqueness, let $u(u \neq z)$ be another common fixed point of A, B, S and T.

$$\textstyle \int_0^{d(Su,Tz)} \varphi(t)dt = \int_0^{d(u,z)} \varphi(t)dt \leq \alpha(\mathsf{d(u,z)}) \textstyle \int_0^{M_1(u,z)} \varphi(t)dt \; \forall x,y \in X.$$

where,

$$M_1(u,z) = \max\{d(Au,Bz), d(Au,Su), d(Bz,Tz), \frac{1}{2}[d(Au,Tz) + d(Su,Bz)], \frac{1+d(Au,Bz)}{1+d(Bz,Tz)}d(Au,Su),$$

$$\frac{1 + d(Au,Bz)}{1 + d(Au,Su)} d(Bz,Tz), \qquad \frac{d^2(Au,Su)}{1 + d(Su,Tz)'}, \qquad \frac{d^2(Bz,Tz)}{1 + d(Su,Tz)'}, \qquad \frac{1 + d(Au,Tz) + d(Su,Bz)}{1 + d(Au,Bz) + d(Su,Tz)} d(Au,Su),$$

$$\frac{_{1+d(Au,Tz)+d(Su,Bz)}}{_{1+d(Au,Bz)+d(Su,Tz)}}d(Bz,Tz)\}$$

$$=d(u,z).$$

Thus, from (3.4)

$$\int_0^{d(Su,Tu)} \varphi(t)dt \le \int_0^{d(u,z)} \varphi(t)dt \le \alpha(d(u,z)) \int_0^{d(u,z)} \varphi(t)dt \ \forall x,y \in X.$$

Which is a contradiction.

Therefore, u=z. Hence A,B,S and T have a unique common fixed point. This Completes the proof.

From Theorem 3.1, if A = B and S = T, we get the following.

Corollary 3.2: Let A and S be two self –mappings of a complex valued metric space (X,d) satisfying

(C6)
$$SX \subset AX$$

(C7)
$$\int_0^{d(Sx,Sy)} \varphi(t)dt \le \alpha(\mathsf{d}(\mathsf{x},\mathsf{y})) \int_0^{M_1(x,y)} \varphi(t)dt$$
, $\forall x,y \in X$.

where,

$$\begin{split} &M_{1}(x,y) = \max\{\mathsf{d}(\mathsf{Ax},\mathsf{Ay}),\mathsf{d}(\mathsf{Ax},\mathsf{Sx}),\mathsf{d}(\mathsf{Ay},\mathsf{Sy}), \frac{1}{2}[d(Ax,Sy) + d(Sx,Ay)], \frac{1+d(Ax,Ay)}{1+d(Ay,Sy)}d(Ax,Sx), \\ &\frac{1+d(Ax,Ay)}{1+d(Ax,Sx)}d(Ay,Sy), \qquad \frac{d^{2}(Ax,Sx)}{1+d(Sx,Sy)'}, \qquad \frac{d^{2}(Ay,Sy)}{1+d(Sx,Sy)'}, \qquad \frac{1+d(Ax,Sy)+d(Sx,Ay)}{1+d(Ax,Ay)+d(Sx,Sy)}d(Ax,Sx), \\ &\frac{1+d(Ax,Sy)+d(Sx,Ay)}{1+d(Ax,Ay)+d(Sx,Sy)}d(Ay,Sy)\}, \end{split}$$

for each x, y in X.

- (C8) the pair (A, S) is welly compatible.
- (C9) the pair (A, S) satisfies CLR_A property. Then A and S have a unique common fixed point.

REFERENCES

[1] M. Aamri, D.El. Moutawakil, Some new common fixed point theorems under strict contractive conditions, J. Math. Anal. Appl., **270**(2002), 181-188, **doi:** 10.1016/S0022-247X(02)00059-8.

ISSN: 2278-6236

- [2] S. Bhatt, S, Chaukiyal, R.C. Dimri, A common fixed point theorem for weakly compatible maps in metric spaces, Int. J. Math. Sci. Appl., **1**(2011), 1385-1389.
- [3] Rene Maurice Frechet, Common fixed point theorems in metric spaces **22**(1906), 123-125.
- [4] G. Jungck, Common fixed points for non-continuous non-self mappings on non-metric spaces, Far East J. Math. Sci., **4** (1996), 199-212.
- [5] W. Sintunavarat, P. Kumam, Common fixed point theorems for a pair of weakly compatible mappings in fuzzy metric spaces, J. Appl. Math., **2011**(2011), Article ID 637958, 14 pages, **doi:**10.1155/2011/637958.
- [6] R.K. Verma, H.K. Pathak, Common fixed point theorems using property E.A. in metric spaces, Thai J. Math., **11**(2013), 347-355.
- [7] C. Vetro, On Branciaris theorem for weakly compatible mappings, Appl. Math. Lett., **23**(2010), 700-705, **doi:** 10.1016/j.aml.2010.02.011.
- [8] A.Aliouche, A common fixed point theorem for weakly compatible mappings in symmetric spaces satisfying a contractive condition of integrable type, J. Math. Anal. Appl., **322**(2006), 796-802.
- [9] A Djoudi and A. Aliouche, Common fixed point theorems of Gregus type for weakly compatible mappings satisfying contractive conditions of integral type, J. Math. Anal. Appl., **329** (2007), 31-45.
- [10] G. Jungck and B.E. Rhoades, fixed points for set valued functions without continuity, Indian. J. Pure. Appl. Math., 29(1998), 227-238.
- [11] Z. Liu, Y. Han, S.M. Kang and J.S. Ume, Common fixed point theorems for weakly compatible mappings satisfying contractive conditions of integral type, Fixed Point Theory Appl., **2014** (2014), 16 pages.

ISSN: 2278-6236

[12] Z. Liu, M. He, X. Liu and L. Zhao, Common fixed point theorems for four mappings satisfying contractive inequalities of integral type, Nonlinear Funvt. Anal. Appl., **23**(3)(2018), 473-501.

[13] B.E. Rhoades, Two fixed-point theorems for mappings satisfying a general contractive contraction of integral type, Int. J. Math. Math. Sci., **2003**(2003), 4007-4013.

[14] P. Vijayaraju, B.E. Rhoades and R. Mohanraj, A fixed point theorem for a pair of maps satisfying a general contractive condition of integral type, Int. J. Math. Math. Sci., **2005**(2005), 2359-2364.

[15] Z. Liu, L. Meng, N. Liu and C.Y. Jung, Common fixed point theorems for a pair of mappings satisfying contractive inequalities of integral type, Nonlinear Funct. Anal. Appl., **25**(2020), 69-100.

ISSN: 2278-6236