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                                         1. INTRODUCTION 

Fixed point theory is one of the most fruitful and applicable topics of nonlinear analysis, 

which is widely used not only in other mathematical theories, but also in many practical 

problems of natural Sciences and Engineering. The Banach contraction mapping principle is 

indeed the most popular result of metric fixed point theory. This principle has many 

applications in several domains, such as differential equations, functional equations, integral 

equations, economics, wild life, and several others. 

Branciari gave an integral version of the Banach contraction principles and proved fixed 

point theorem for a single-valued contractive mapping of integral type in metric space. 

Afterwards many researchers extended the result of Baranciari and obtained fixed point and 

common fixed point theorems for various contractive conditions of integral type on 

different spaces. Now, we recollect some known definitions and results from the literature 

which are helpful in the proof of our main results. 
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Definition1.1: A coincidence point of a pair of self-mapping          is a point     

for which           

A common fixed point of a pair of self-mapping          is a point     for 

which              Jungck initiated the concept of weakly compatible maps to study 

common fixed point theorems. 

Definition1.2: A pair of self-mapping          is weakly compatible if they commute at 

their coincidence points, that is, if there exists a  point     such that           

whenever          

In the study of common fixed points of weakly compatible mappings, we often 

require the assumption of completeness of the space or subspace or continuity of mappings 

involved besides some contractive condition. Aamri and Moutawakil [1] introduced the 

notion of E.A. property, which, requires only the closedness of the subspace and Liu et al. 

extended the E.A. property to common the E.A. property as follows:  

Definition 1.3: Let      be a metric space and              be four self-maps. The 

pairs       and       satisfy the common E.A. property if there exist two sequence      

and      in   such that           =           =           =           =      

Sintunavarat and Kumam introduced the notion of the (CLR) property, which never requires 

any condition on closedness of the space or subspace and Imdad et al. introduced the 

common(CLR) property ehich is an extension of the (CLR) property. 

Definition1.4: Let       be a metric space and              be four self-maps. The 

pairs       and       satisfy the common limit range property with respect to mappings   

and  denoted by (CL   ) if there exists two sequences {    and {    in   such that 

          =           =           =           = s        

Lemma1.5: Let       be a metric space and {    be a sequence in    Then {    converges 

to   if and only if             as    , where      

Jungck [4]  introduced the concept of weakly compatible maps as follows: 
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Definition1.6: Let   and   be two self-mappings of a metric space       Then a pair (   ) is 

said to be weakly compatible if they commute at coincidence points. 

In 2002, Aamari and Moutawakil [1] introduced the notion of E.A. property as follows. 

Definition1.7: Let       be a complete metric space and        be a contraction 

mapping, i.e.                            and   [0,1) then T has a unique fixed 

point. 

Definition 1.8: Let   and   be two self-mappings of a metric space        Then a pair       

is said to satisfy E.A. property if there exists a sequence {  } in   such that           = 

          =    for some      

Example 1.9: Suppose   = [2,4] with                             

Define                                  and  

                          if         

Take a sequence {  } as    =              . Then        (3+1/k) = 2(3+1/k)/3 = 

2+1/k = 2 as k   and                                                

        as k  . This gives                 as    . This gives     ) satisfies 

E.A. property. 

Definition 1.10: Let   be a non-empty set. Then   and   over a metric space      satisfy 

CLR property if             =             =      for some      

Example 1.11: Let      . Define the mapping          by                     for 

all   ,    . Then      is a metric space. Define   and        by        and         

for all    , respectively. Consider a sequence {    = {
 

 
       in    Then 

          =         = 0 and           =           = 0. 

Thus,   and   satisfy CL   property. 

The following definitions will be used in sequel: 
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Let    be the set of all functions ϕ : [0, ∞) → [0, ∞) satisfying the following conditions: 

1. ϕ is continuous on [0, ∞). 

2. ϕ is non-decreasing. 

3. ϕ(0) = 0 and ϕ(t) > 0 for all t > 0. 

Let    be the set of all functions α : [0, ∞) → [0, 1) satisfying the following conditions: 

1. α is measurable or continuous on [0, ∞). 

2. α(0) = 0 and α(t) < 1 for every t > 0. 

3.   Optionally, sup_{t>0} α(t) = κ < 1 (a uniform contraction bound) or α is non-decreasing. 

2. Fixed Point Theorems for Weakly Compatible Mappings with E.A. Property 

Now, we prove common fixed point theorems for two pairs of weakly compatible self-maps 

along with E.A. property. 

Theorem 2.1: Let       and   be self mapping in a metric space       such that  

(C1         and       

(C2)        and       are weakly compatible; 

(C3)         
        

 
   (      )       

       

 
,        

Where (              and for all        

        = max{                             
 

 
                   , 

          
          

          
        , 

         

          
, 

         

          
, 

                   

                   
        , 

                   

                   
        . 

(C4)  The pairs       and       satisfy the E.A. property.  

Suppose that any one of             is a closed subspace of  . Then       and   have a 

unique common fixed point. 

Proof. Suppose that       satisfies the E.A. property. Then there exists a sequence {    in   

such that A   = S  =   for some      
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Since         there exists a sequence {    in   such that S   = B  . Hence,           = 

z. 

We shall show that           = z. We shall show that           = z. Let           = t 

 z. 

Put       ,        

       
          

 
   ( (           

       

 
,         

          = max{d(A       ,d(A   S   ,d(B  ,T  ),
 

 
[d(A   T  )+d(S  ,B  )], 

            

            
          , 

            

            
          , 

           

            
, 

           

            
, 

                       

                       
          , 

                       

                       
          } 

Now,           =           = z =           and              .  

  (  ,     = max{                       
 

 
               ,

        

        
      , 

        

        
      , 

       

        
, 

       

        
, 
               

               
      , 

               

               
d(z,t)} 

= max {0, 0                                   

=         

where,  

             
          

 
   ( (             

         

 
 

       
        

 
   (             

         

 
 

                              (             
      

 
  

which is contradiction.  

Therefore, t = z. i.e.           = z.  

Suppose that    is a closed space of    Then there exists     such that          



 International Journal of Advanced Research in                           ISSN: 2278-6236                           

       Management and Social Sciences                                                Impact Factor: 7.624                                            
                                                                                                         
  

Vol. 11 | No. 11 |November 2022 www.garph.co.uk IJARMSS | 159 
 

Subsequently, we have 

          =           =           =           =         

Now, we shall show that          

Let          

From (C3), we have  

       
          

 
   (                

         

 
,        

Letting n   

             
        

 
     (              

         

 
,         

       
         

 
           )       

         

 
,                                                                (2.1) 

where, 

          = max{ (A       ,  (A  ,S  ), (B      ),
 

 
[ (A                   , 

            

            
            

            

            
          , 

           

            
, 

           

            
, 

                       

                       
          , 

                       

                       
          } 

=  max{ (A      ,  (A       ,  (      , 
 

 
[ (A                  ], 

            

            
          , 

            

            
          , 

           

           
, 

         

           
, 

                     

                     
           

                     

                     
          

= max {0,0,                     ,0,         ,0,          

=                                                                                                                                           (2.2) 

Equation (2.1) and (2.2) leads to contradiction. Therefore,              

Since   and   are weakly Compatible, we have            Hence,            
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Since          there exists,     such that          

Now, we claims that          Let          

        = max{                          , 
 

 
[                  , 

          

          
        , 

          

          
        , 

         

          
, 

         

          
, 

                   

                   
        , 

                   

                   
        } 

= max{0,                                                

=                     

Thus from (C3), we have 

       
        

 
   (d(v,u)       

       

 
,         

                            (v,u)       
        

 
. 

Which is a contradiction. Therefore,               

Thus, we have                    The weak compatibility of   and   implies that 

                       Now, we claim that Tu is the common fixed point of       

and  . Suppose that           From (C3), we have                       

       
         

 
  (d(v,Tu))       

        

 
,          

and 

         = max                              , 
 

 
[                  )], 

           

            
        , 

           

          
          , 

         

           
, 

           

           
 

                     

                     
        , 

                     

                     
          } 

= max                              ,0,0,0,0,0,0,0} 

=                        
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Thus, from equation (3) leads to a contradiction.  Therefore,                 

Hence    is the common fixed point of   and  . Similarly, we prove that    is the common 

fixed point of   and    Since        , Tu is the common fixed point of       and  .  

The proof is similar when    is assumed to be a closed subspace of  . The cases in 

which    or    is a complete subspace of   are similar to the cases in which         , 

respectively is complete subspaces of  . Since       and        

Finally, for uniqueness, let   and         be two common fixed points of       and    

From (C3), we have 

       
        

 
  ( (p,q))       

       

 
,                                                                 (2.4) 

Where, 

        = max{                          ,
 

 
[                 ], 

          

          
        ,  

          

          
        , 

         

          
, 

         

          
, 

                   

                   
        , 

                   

                   
        } 

= max{                          ,0,0,0,0,0,0,0} 

=         

From equation (2.4) which leads to contradiction. Therefore,        Hence 

      and   have a unique common fixed point. This completes the proof. 

If       and       in the above Theorem,we get the following: 

Corollary 2.2: Let   and   be two self-mappings of a complex valued metric space       

satisfying        

       
        

 
   (d(x,y))       

       

 
,       
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  (x,y) = max{ (                        ,
 

 
                    , 

          

          
        , 

          

          
        , 

         

          
, 

         

          
, 

                   

                   
        , 

                   

                   
        } 

The pair       is weakly compatible. If one of    or    is closed subspaces of  , then   and 

  have a unique common fixed point. 

3. Fixed Point Theorems for Weakly Compatible Mappings with CLR Property 

Now, we prove common fixed point theorems for weakly compatible mappings with CLR 

property. 

 Theorem 3.1: Let       and   be four self-mappings of a complex valued metric space 

      satisfying (C2), (C3), and (C9)       and the pairs       satisfies CL   property or 

       and the pair       satisfies CL   property. Then       and   have a unique 

common fixed point. 

Proof: Without loss of generality, assume that       and the pairs       satisfies CL   

property. Then there exists a sequence {  } in X s.t.            =           = Ax for 

some      Since        there exists a sequence {    in   such that           

Hence               

We shall show that                Let          = z        

Form (C3) we have  

       
          

 
   (d(              

         

 
,         

Letting n  , we have 

       
       

 
  (d(     )       

         

 
 ,                                                                     (3.1) 

where 
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         = max{d(A       , d(A         d(B  ,T   , 
 

 
          +d(S   B  )], 

            

            
      S  ), 

            

            
          , 

           

            
, 

           

            
,  

                       

                       
          , 

                       

                       
           

Letting limit n tends to infinity. 

               =                                      
 

 
         

   ,  ], 1+   ,  1+   ,  (  ,  ), 1+   ,  1+   ,   (  , ), 

         

         
 , 

        

         
, 
                  

                  
        , 

                  

                  
       } 

=                        
 

 
                  0,

        

         
, 0,                     

Thus, from equation(3.1) this leads to contradiction. Therefore, Ax=z and hence 

              

Subsequently, we have  

         =           =          =           =         

Now, we shall show that       Let       

From (C3), we have 

       
          

 
  (d(x,   )       

        

 
,       , 

where, 

         = max{d(Ax,B   , d(Ax,Sx), d(B       , 
 

 
                     , 

           

            
        , 

           

           
      T   , 

         

           
, 

           

           
, 

                     

                     
        , 

                     

                     
      T   } 
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= max{d(z,z), d(z,Sx), d(z,z), 
 

 
                , 

        

        
       , 

        

        
      , 

        

        
, 

       

         
, 
                

                
      ,

                

                
      } 

= max{0,       ,0,
 

 
       ,        , 0,        ,0,0,0} 

=         

Thus, 

       
         

 
   (d(x,           

        

 
,         

       
       

 
  (d(x,           

       

 
, 

a contradiction.  

Therefore,              

Since the pair       is weakly compatible, it follows that          Also, since        

there exists     such that               Now, we show that         

Let         From (C3), we have  

       
          

 
  (d(              

         

 
,         

Letting n   

       
       

 
   (d(               

         

 
 x,y X.                                                     (3.2) 

         =               , d(A       , d(By,Ty), 
 

 
 d(A      +d(S  ,By)], 

           

          
          , 

           

            
        , 

           

           
, 

         

           
, 

                     

                     
          , 

                     

                     
        } 

= max{d(z,z),d(z,z),d(z,Ty), 
 

 
                , 

        

         
      , 

        

         
       , 

       

         
, 

        

        
, 
                

                
      , 

                

                
       } = d(z,Ty) 
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Thus from equation (3.2)  

       
       

 
  (d(            

       

 
 

Which is a contradiction. Thus,               

Since the pair       is weakly compatible, it follows that          Now, we claim that 

         

Let         From (C3) we have  

       
        

 
    (d(z,z)       

       

 
,                                                                              (3.3) 

where,  

        = max{d(Az,Bz), d(Az,Sz), d(Bz,Tz), 
 

 
[d(Az,Tz)+d(Sz,Bz)], 

          

          
        , 

          

          
        , 

         

          
, 

         

          
, 

                   

                   
        , 

                   

                   
        } 

= max{                          , 
 

 
                   , 

          

          
        , 

          

          
        , 

         

          
, 

         

          
, 

                   

                   
        , 

                   

                   
        } =           

Thus , from (3.3), we have  

       
        

 
  (d(z,z))       

       

 
 = 0 

Which is a contradiction. Therefore,          i.e.                    

Now we shall show that z = Tz. Let z  Tz. From (C3), we have  

       
       

 
         

        

 
  (x,z)       

       

 
,                                                  (3.4) 

where, 
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        = max{d(Ax,Bz), d(Ax,Sz), d(Bx,Tz) , 
 

 
                   , 

          

          
        , 

          

          
        , 

         

          
, 

         

          
, 

                   

                   
        , 

                   

                   
        } 

= max{d(z,Tz) , d(z,Tz),d(z,Tz),
 

 
                 , 

         

          
      , 

         

        
        , 

       

         
, 

         

         
, 
                 

                 
      , 

                 

                 
        } 

= max{                                0,0,0,0,0,0} 

=         

Thus , from (3.4) 

       
       

 
 =        

        

 
   (x,z)       

       

 
 

Which is a contradiction.  

Therefore,                        Hence z is the common fixed point 

of               

Finally, for uniqueness, let u(u    be another common fixed point of       and  .  

       
        

 
 =        

      

 
  (d(u,z))       

       

 
         

where,  

        = max{d(Au,Bz), d(Au,Su), d(Bz,Tz), 
 

 
                   ,

          

          
        ,  

          

          
        , 

         

          
, 

         

          
, 

                   

                   
        , 

                   

                   
        }  

=         

Thus, from (3.4) 
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Which is a contradiction.  

Therefore,        Hence       and   have a unique common fixed point. This Completes 

the proof.  

From Theorem 3.1 , if     and        we get the following.  

Corollary 3.2: Let A and S be two self –mappings of a complex valued metric 

space       satisfying 

(C6)           

(C7)        
        

 
  (d(x,y))       

       

 
,          

where, 

         max{d(Ax,Ay),d(Ax,Sx),d(Ay,Sy), 
 

 
                   , 

          

          
        , 

          

          
       ), 

         

          
, 

         

          
, 

                   

                   
        , 

                   

                   
        }, 

for each     in  .  

(C8)  the pair       is wekly compatible.  

(C9)  the pair       satisfies CL   property. Then A and S have a unique common fixed 

point.  
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