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Abstract: In this article, we show that a finite dimensional Hilbert space can have an infinite 

Bessel sequence, but a normalized Bessel sequence in a finite dimensional Hilbert space must 

be of finite length. A relation between the dimension of a given finite dimensional Hilbert 

space and the bound of any finite normalized tight frame for the underlying space is 

obtained. Also some properties of the frame operator and the Bessel sequence are discussed 

for finite normalized tight frame with some examples.  
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1  INTRODUCTION 

Frames for Hilbert spaces were introduced by Duffin and Schaeffer (see [4]) in 1952 to study 

some deep problems in non-harmonic Fourier series. Duffin and Schaeffer abstracted the 

fundamental notion of Gabor [6] for signal processing. These ideas did not generate much 

interest outside of non-harmonic Fourier series and signal processing until the landmark 

paper [3] of Daubechies, Grossmannn, and Meyer in 1986. After this ground breaking work 

the theory of frames began to be widely studied. Frames are redundant sets of vectors in a 

Hilbert space, which yield one natural representation of each vector in the space, but may 

have infinitely many different representations for any given vector. It is this redundancy that 

makes frames useful in applications. Today, frames play an important role in many 

applications in mathematics, science, and engineering. Some of these applications include 

time-frequency analysis, internet coding, speech and music processing, communication, 

medicine, quantum computing, and many other areas. 

In the recent past theory of frames has developed to broader areas. Tight frames are 

important in fast convergence and normalized tight frames control the elements of frames. 

The theory of normalized tight frames was developed by John Benedetto in [1]. 

In this paper, we discuss finite tight frames (FTF) and finite normalized tight frames (FNTF) 

and their relations with Bessel sequence. A Bessel sequence in finite dimensional Hilbert 

space is square-summable in norm and if a finite Bessel sequence which is a frame for a 

Hilbert space, then the dimension of the Hilbert space is finite. Our main result shows that a 

Bessel sequence in a finite dimensional Hilbert space must be of finite length. Further, we 

explicate some properties of Bessel sequence and frame operator with some examples. 

2  DEFINITIONS AND PRELIMINARY RESULTS  

We start with the definition of a frame.  

Definition 2.1 Let   be a finite dimensional Hilbert space over the field ,  where RK =  or 

C . A sequence N
nnx 1=}{  called a frame for H  if there exist finite positive constants A  and 

B , such that  

  

The positive constants A  and B  are called upper and lower frame bounds of N
nnx 1=}{ , 
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respectively. They are not unique. The above inequality is called the frame inequality for the 

frame. 

If the upper inequality in above inequality is satisfied, then we say that N
nnx 1=}{  is a Bessel 

sequence for H  with Bessel bound B . 

Put  

 1)}.(2 satisfies :0>{sup=0 AAC  

 and  

 1)}.(2 satisfies :0>{sup=0 BBD  

The numbers 0C  and 0D  are called best bounds or optimal bounds of the frame N
nnx 1=}{ . 

Definition 2.2 The operator HK →Θ N:  given by  

 ,=})({
1=

kk

N

k
k xcc ∑Θ  

is called the pre-frame operator or the synthesis operator of the frame. The adjoint operator 
NKH→Θ :*  given by  

 ,},{=)( 1=
* N

kkxxx 〉〈Θ  

and is called the analysis operator of the frame. 

The frame operator of the frame is the operator HH→ΘΘ := *S  which is given by  

 .allfor ,,=)(
1=

H∈〉〈∑ xxxxxS kk

N

k

 

 In term of the frame operator  

 .,|,|=, 2

1=
H∈〉〈〉〈 ∑ xxxxSx k

N

k

 

Thus, the lower frame bound can thus be considered as some kind of ‘lower bound’ on the 

frame operator. The frame operator S  is a positive, self-adjoint and invertible operator on 

H .  

Definition 2.3 A frame N
nnx 1=}{  for H  is said to be   

    1.  tight if BA = .  

    2.  normalized tight or Parseval, if 1.== BA   

Definition 2.4  An FNTFA−  for dK  is a finite sequence d
n Nnx K⊆}1,...,=:{  for 

which the Euclidean norm nx  is 1 for each nx , i.e., }{ nx  is normalized, and for which 
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there exists 0>A  such that dy K∈∀ , nn

N

n
xxy

A
y 〉〈∑ ,1=

1=

  

Now we record some results which are useful for the better understanding of various tight 

frames. The following theorem was proved independently in [7] and [8].  

Theorem 2.5  Let H  be a d -dimensional Hilbert space and dN ≥ . Then, there exist a 

sequence of N  elements which form an FNTF for H .  

The following results not only give surety for the existence of FNTFs for 2R  and 3R  but 

also provide a direct computational method for finding some of them. 

Theorem 2.6  Normalized tight frames for 2R  for N  elements correspond to sequences 

C⊆N
nnz 1=}{ , with 1|=| nz , for all n  and for which  

 0.=2

1=
n

N

n
z∑  

The authors of [5] and [7] proved the above result independently. It is observed that 

normalized tight frames for 3R  which corresponds to a certain system satisfy additional 

conditions. This result is given in [5].  

Theorem 2.7  Normalized tight frames for 3R  of N  elements correspond to sequences 

C⊆N
nnz 1=}{ , with 1|| ≤nz  for all n  that satisfy  

 0.=||10,=,
3
2=|| 2

1=

2

1=

2

1=
nn

N

n
n

N

n
n

N

n
zzzNz −∑∑∑   

3  MAIN RESULTS 

Now we make an attempt of understanding of the normalized tight frames. In particular, we 

are interested in finite-dimensional Hilbert spaces H , where kCH =  or kRH = , for a 

fixed positive integer k . Although it is quite possible for a finite dimension Hilbert space to 

have an infinite Bessel sequence, but a normalized Bessel sequence in a finite dimensional 

Hilbert space must be of finite length. In case of infinite sequence, the sum in equation (1) 

will be indexed over the set of natural numbers N .  

Proposition 3.1  Let H  be a Hilbert space and ∞
1=}{ nnx  be a Bessel sequence in H . If 

dimension of H  is finite, then ∞
1=}{ nnx  is square-summable in norm.  

Proof. Let H  be a Hilbert space of dimension k  (say) and ∞
1=}{ nnx  be a Bessel sequence, 

then there exists a Bessel bound 0>B  such that  
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Since orthonormal basis exists for every Hilbert space, let k
iie 1=}{  be the orthonormal basis 

of H . By Parseval’s identity, we have  

 

 

Therefore,  

  

 

 

 

 

 

Both B  and k  in the above expression are finite, so }{ 2PP nx  is square summable.  

Proposition 3.2  Let H  be a Hilbert space and ∞
1=}{ nnx  be a normalized Bessel sequence 

in H . If dimension of H  is finite, then the sequence ∞
1=}{ nnx  is a finite sequence.  

Proof. Let k  be the dimension of the Hilbert space H  and the Bessel sequence ∞
1=}{ nnx  

be normalized i.e. , for every N∈n . Then by Proposition 3.1, we have  

 

 

For the convergence of the above series, must approaches to zero as n  

for all N∈n . So the only possibility for ∞
1=}{ nnx  is tends to infinity. But, 

that it has only finite number of terms.  

Proposition 3.3  If N
nnx 1=}{  is a finite Bessel sequence which is a frame for a Hilbert space 

H , then Ndim ≤H .  

Proof. Let  

 〉〈 Nxxxspan ,,,= 21 M  

be a subspace of the Hilbert space H . Let x  be an element in ⊥M , where ⊥M  is the 

orthogonal complement of M  in H , then 0=, 〉〈 nxx , for every Nn ,1,2,=  . This 
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implies  

 0=|,| 2

1=
〉〈∑ n

N

n
xx  

Since the sequence N
nnx 1=}{  is a frame, there exists a positive constant A  such that  

 

 

As 0>A , so 0=2PPx  that is 0=x . Since x  was arbitrary, 0=⊥M  and hence 

H.M = But Ndim ≤M , so Ndim ≤H .  

Theorem 3.4 Let S  be a frame operator and ∞
1=}{ nnx  be a Bessel sequence for a Hilbert 

space H . Then, ∞
1=}{ nnx  is an A -tight frame if and only if AIS = , where HH→:I  is 

the identity mapping.  

Proof. The result follows directly by the definition of frame operator and A -tight frame. Let 

AIS = , then  

 nn
n

xxxxS 〉〈∑
∞

,=)(
1=

 

 nn
n

xxxxAI 〉〈⇔ ∑
∞

,=)(
1=

 

 nn
n

xxxxA 〉〈⇔ ∑
∞

,=.
1=

 

 nn
n

xxx
A

x 〉〈⇔ ∑
∞

,1=
1=

 

 So, ∞
1=}{ nnx  is an A -tight frame and conversely.  

Theorem 3.5 Let S  be a frame operator and ∞
1=}{ nnx  be a Bessel sequence for a Hilbert 

space H . If ∞
1=}{ nnx  is an A -NTF, then 1≥A , and also 1=A  if and only if ∞

1=}{ nnx  is 

orthonormal.  

Proof. Since ∞
1=}{ nnx  is A -NTF i.e. nnn

xxx
A

x 〉〈∑∞ ,1=
1=

 and,      for each 1,2,=k , 

we have  
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Thus, 1≥A . In the above expression, if 1=A , then 0=|,| 2〉〈∑∞

≠ nkkn
xx , this implies 

0=, 〉〈 nk xx , for nk xx ≠ . This means ∞
1=}{ nnx  is an orthogonal sequence. As,       so 

∞
1=}{ nnx  is orthonormal. Conversely if ∞

1=}{ nnx  is orthonormal, then 0=|,| 2〉〈∑∞

≠ nkkn
xx  

and hence 1=A .  

The following result gives a unique choice for the bound of FNTF for underlying space. 

Theorem 3.6 If H  d-dimensional Hilbert space and N
nnx 1=}{  is an A - FNTF , then A  is 

the ratio of number of elements in the frame to the dimension of the dimension of the 

Hilbert space H .  

Proof. Since every Hilbert space has an orthonormal basis, so let us assume d
jje 1=}{  be an 

orthonormal basis for H . Then  

 

 

So .,1,2,= foreach ,,1= ,frame A of definitionBy 
1=

djxxe
A

eFNTF nnj

N

n
j 〉〈− ∑  

 2

1=1=

2

1=1=
|,|=|,|= 〉〈〉〈 ∑∑∑∑ nj

d

j

N

n
nj

N

n

d

j
xexeAd  
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Therefore, 
d
NA = , which completes the proof.  

From the above theorem is easy to see that if N
nnx 1=}{  is an A - FNTF  then 1=A  if and 

only if N
nnx 1=}{  is an orthonormal basis of the Hilbert space H . 

4  EXAMPLES AND MOTIVATION 

We discuss now some examples of FNTF in finite dimensional Hilbert spaces. First we take 
2= RH . By Theorem 2.5, there exist an FNTF for H  of N  elements where 2≥N . 

First we consider the case 2.>N  The N vectors in 2R  identified with thN  roots of unity 

are an FNTF. Let N
nnx 1=}{  are the thN  roots of unity, i.e., N

nnx 1=}{  satisfies the following 

equation  

 1.=Nz  

If N  is odd, then the set obtained by squaring the elements of the set of the thN  roots of 

unity is the same set. Indeed, if we choose 3=N , then ω1,  , 2ω  are cube root of unity, 

where 1=3ω . 

Since  

 .===)(and=1,=1 3422222 ωωωωωωω  

Therefore, we obtained the same set }.,{1, 2ωω  

Now we consider the case when N is even. One may observed that by taking the square of 

the elements of the set containing all the thN  roots of unity, we obtain two copies of the 

2
N -th roots of unity. This can be understood by taking 4.=N  Consider the set 

},1,{1, ii −− . 

Since  

 1.=1,=1,=11,=1 2222 ii −−  

Therefore, 1}{1,−  and 1}{1,−  are two copies of the th2=4/2  roots of unity. We also 

observe that in both the situations, the sum of the squares of the thN  roots of unity is 0 . 

Now discuss the case when 2=N . The thN  roots of unity are 1 and 1−  do not form an 

FNTF for H . Let, if possible 1}{1,−  form an FNTF for 2= RH . Then, by Theorem 2.6, we 

have  
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 0.1)((1) 22 ≠−+  

This is a contradiction.  

Remark 4.1  The family }{1, i  is not only FNTF but also form ONB for 2R  as  

 0.=1 22 i+  

Now we discuss a system of finite vectors in 3= RH  to be an FNTF. Any finite normalized 

tight frame for 2R  whose elements also sum to zero may be converted into a FNTF for 

.3R  Indeed, let 1
1=}{ Sz N

nn ⊆  satisfies  

 0.== 2
nn zz ∑∑  

Then, we can show that N
nnz 1=}

3
2{  is FNTF for 3R . 

We compute  

 2

1=

2

1=
||

3
2=|

3
2| n

N

n
n

N

n
zz ∑∑  

 2

1=
||

3
2= n

N

n
z∑  

 .
3
2= N  (4.1) 

 and  

 2

1=

2

1=
)(

3
2=)

3
2( n

N

n
n

N

n
zz ∑∑  

 2

1=
)(

3
2= n

N

n
z∑  

 0.=  (4.2) 

By using as 1|=| nz , we obtain  

 2/31
3
2=||

3
21)

3
2(

1=

2

1=
−− ∑∑ n

N

n
nnn

N

n
zzzz  

 
3
1

3
2=

1=
n

N

n
z∑  

 n

N

n
z∑

1=3
2=  

 0.=  (4.3) 
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By using equations (4.1), (4.2) and (4.3) in Theorem 2.7, we conclude that }
3
2{ nz  is FNTF 

for H . 
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