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Abstract: The present work concerned with the transient analysis of a two-dimensional
state markovian queueing model in which, when a customer has just been served and other
customers are present, the server accepts a customer with fix probability p or commences a
vacation of random duration with probability (1- p). Whenever no customers are present,
after a service completion or a vacation completion, the server always takes a vacation with
probability one. And also the server is subject to random breakdowns while in operation and
must be repaired before service can resume. The servers’ repair times, the servers’ service
times, vacation times, and breakdown times are exponentially distributed. Arriving units are
in Poisson stream. And it is shown that the transient state probabilities can be easily
computed with recurrence relations. In order to validate the analytical approach, we
compute numerical results. Graphical representation is also performed to explore the effect
of different parameters.
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1. INTRODUCTION

The most classical case in a queue assumes a reliable machine or server; however, in
practice we often meet the cases where the servers may fail and can be repaired. Besides,
server breakdowns are considered as the most natural cause of service interruptions. Server
breakdowns phenomena can be encountered in the area of computer, communication
network and flexible manufacturing systems, etc. The performance of a system may be
heavily affected by the service station breakdowns and limited repair capacity; as such
gueueing systems with a repairable server are of worth investigation from the performance
prediction viewpoint. The problem of queueing systems with server failures is of continuing
interest to many researchers. Several models have been built and analyzed. White and
Christie [1] introduced queueing systems with service interruptions. Further these results
are extended by many researchers like Aissani and Artalejo[2], Avi-ltzhak et al.[3], Gaver[4],
Thirvengadam[5], Takine and Sengupta[6], Federgruen and Green[7] and Mitrany and Avi-
Itzhak[8]. Also, Wang [9, 10, 11] extended the markovian queueing model under the N
policy with server breakdowns and summarized the major developments in this area.
Krishna Kumar et al. [12] also considered this variant queueing model with an unreliable
server.

Also, in many queueing models the server becomes unavailable for occasional intervals of
time. In literature, a time interval when the server is either unavailable or idle is called
vacation period. Queueing model with server vacations have attracted much attention from
numerous researchers since Levy and Yechiali [13]. Server vacations are useful for the
systems in which the server wants to utilize his idle time for different purposes. An excellent
survey of queueing systems with server vacations was found in Doshi [14]. Cooper [15],
Takagi [16] and Tian and Zhang [17] also presented various vacation models. Further,
various authors studied queues with server vacations under various vacation policies
including Bernoulli schedules. The classical vacation scheme with Bernoulli schedule in
which the server serves the new customer with probability p or takes a vacation with
probability (1-p) was originated and developed significantly by Keilson and Servi [18]. The
advantage of the Bernoulli schedule is the existence of a control parameter p. By adjusting

the value of p, we can control the congestion of the system. Various aspects of Bernoulli
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vacation models for single server queueing systems have also been studied by Servi [19] and
Ramaswamy and Servi [20].

The queueing models under random breakdowns have also been studied by including server
vacations. Queueing models with server breakdowns and vacations accommodate the real-
world situations more closely. Grey et al. [21] considered a vacation queueing model with
service breakdowns. In this respect, Ke [22, 23] has done good deal of work on batch arrival
gqueue with server breakdown and multiple vacations. All of the above mentioned
contributions are only confined to results describing steady-state operation and rely on
different assumptions for the queueing models. But, in this paper we put emphasis on
transient analysis because steady state measures do not reveal the complete picture of the
system behaviour.

In many potential applications of queueing theory, the practitioner needs to know how the
system will operate up to some time instant t. Further, if the system is empty initially, the
fraction of time the server is busy and the initial rate of output etc., will be below the steady
state values and hence the use of steady state results to obtain these measures is not
appropriate. Thus, the investigation of the transient behaviour of the queueing model is also
important from the point of view of theory as well as applications. Krishna Kumar et al. [24]
investigated the transient behaviour of M/M/1 queueing model with catastrophes &
breakdowns.

In the present work, we consider a single-server two-dimensional markovian queue with
Repairable server and Bernoulli Schedule for the probability that exactly i arrivals and j
services occur over a time interval of length t in a queueing model that the server is on
vacation at the beginning of the interval, in order to obtain some analytical results that do
not appear to be present in the literature. The principal purpose of our work is to realize an
extensive analysis of the system from both queueing and reliability points of view. Since
many applications of queueing theory involve queues which are emptied and restarted
periodically and thus not susceptible to analysis using the well-known equilibrium results,
there are many potential applications for results obtained.

The rest of this paper is organized as follows. Section 2 gives a relatively formal description
of the queueing model. In Section 3, we define the two-dimensional state model and derive

the difference-differential equations and time dependent solution is also obtained for our
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model. Some special cases are discussed in Section 4. Section 5 presents the performances
measures with numerical results where we provide a variety of tables for different values of
the model parameters and also we have numerically verified our results in some special
cases that exists in the literature. Some graphs are presented showing the effect of model
parameters on some performance measures in Section 6.

2. MODEL DESCRIPTION

2.1 Assumptions and Notations:

¢ The arrivals follow a Poisson distribution with parameter A.

¢ The service times are exponentially distributed with parameter p.

¢ The vacation time, mean life time and mean repair time of the service channel follow an
exponential distribution with parameters w, a and B respectively.

¢ Various stochastic processes involved in the system are statiscally independent.

¢ Service discipline is First Come First Served (FCFS).

Initially, there are no units in the system and the server is on vacation, i.e.

PO,O,V (0)=1; PO,O,B (0)=0; Po,o,R 0)=0 (2.1)
1; hen 1=j
8i,j = {o; When i j

Laplace transform of F (t) is

0

F(s)= j e F(t) dt ; Re(s)>0 (2.2)

= 1

Nzri;lb n, = 2.3
() (s+a)" (s+b)™ (2:3)

(—}a,b,c,d (5 1 (2.4)

AR (sra) (s+0)"2 (s+c) ™3 ()™
The Laplace inverse of

n m mg—/ akt -1
LA ()
P(p) S5 (m —0l(¢—1)" dp”' P(p)

(p—a, )™ a, #a, forizk
p=ak

Where, P(p)=(p—a,)" (p—a,)™...(p—a,)™

Q(p) is polynomial of degree <m, +m,+m,+...+m, —1
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thm —at( 1)m+l m-2 =8,
N2 ( Z(nz )l m— Dib— a)nﬁml{Q(nﬁg)j +

g

s (2.5)
n n -m —bt( 1)m+l m-2 m,1
n, +
2 o —mim—Diabyr T L0
(-m-n 1-00,m m-n-1 1-0m-n,0 n-2 1-0n,1
l_l (“4*%1)] ( I1 (“3*%2)] [ I1 (n2+g3)]
Gabed (0= Z £ E M (- 1)M[ g2=0 g3=0
MER2N3NA T et (ng-0)!(f-m)! (n-1)/(m-n)!(b-a)"2 ™! (c-a)"3 M (d-a)14 /-
/-m-n - 51{,111 m-n-1 I-Sm_n’o n-2 I_Bn’l
I1 (n4+g1)J [ I1 (n3+g2)J ( [1 (n1+g3)J
+nzz § g ebt,[nz /( I)ZH (g]—o 27=0 23=0
(=tm=1n=1 (02-0)/(¢-m)! (n-1)!(m-n)!(a-b)"1 11 (¢-b)13 M ()P4 ~m
/-m-n ! _Bé’m m-n-1 : ‘Bm—n,O n-2 1-0n.1
st o | 1L (ate) ( [T (ny+g;) [T (n+g3) (2.6)
. ﬁ $e BTN Le=0 2=0 g3=0
(=1m=1n=1 (n3-0)!(/-m)! (n-1)!(m-n)!(a-c)™ ™! (b-c)"2 "M (dc)"4 H ™
{-m-n ! ‘51{,m m-n-1 ! ‘5m-n,0 n-2 1-5n’1
I (n3+gy) T (ny+gy) IT (ny+g3)
¢ ﬁ Qe dgna-Lop T g0 > [gzo i 23=0 s
/—lm=1n=1 (n4-0)}({-m)! (n-1)!(m-n)!(a-d)™ "™ (b-d)"2 T (o gyP3 ™

3. THE TWO-DIMENSIONAL STATE MODEL

Nomenclature

P v(®)= The probability that there are exactly i arrivals and j departures by time t and the

server is on vacation, j<i

P BO= The probability that there are exactly i arrivals  and j departures by time t and
the server is busy in relation to the gueue,
j<i

P jr(M®= The probability that there are exactly i arrivals and j departures by time t and the

server is broken down and is under repair, j<i
P,;()= The probability that there are exactly i arrivals and j departures by time t,

j<i
3.1 The difference-differential equations governing the system are:

d

d_ Pi,i,V (t) =—A Pi,i,V (H)+p Pi,i—l,B (H(1- 61,0)

;120 (3.1)

d

— Py =-QA+W)P,;y(O+AP_; () +p(1-p)P;, z(O(1-8;,)

dt ; 1>20 (3.2)

d

a 1]B(t) = _()\’+M+a) JB(t)+}\’P 1_]B(t)(1 81 IJ)+l'l’p Pl_] 1B(t)(1 6]0)+BP1JR(t)+WP1JV(t)

; i>j20 (3.3)
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1,_]R(t) - _()\’—I—B) _]R(t)+)\’ P 1]R(t) (1 81 ld)+(l PiJ,B(t)
;i>j20 (3.4)
CIearIy,

Pi,j (t):Pi,j,V (t)+Pi,j,B (t)(1 _81,j )+Pi,j,R (t)(1 _Si,j) i2j20 (3.5)

Taking the Laplace transform of equations (3.1) to (3.4) along with (2.1) and solving
recursively, we have,

— |
Poo,v(s) =
J, 3.6
S+ A (3.6)
= o)1
Piov(s) = ;>0 (3.7
S+HA+WwW S+A i1>0(3.7)
. o (1=3my 0)
_ i1 my=2+0y i) i-m-my-l oo ' N (i-my—m;-1) m,—1
Pios(s) = > > > Nw(ap) [ J (H(m +r)J
m,=0 m; =0 my=l-8,, 4 n=l m, .
;>0 (3.8)
i-mg-m; 2 By 1)
— Mw, AP, Mpto, A
( H (n—}_g)J Gm0+l,m|+2m2m-l.n-1,1(s)
g0
i-my-1  i-myp-m; o 1 (i-mg-m;-1)
PIOR(S)— Z z Z z;\‘l r1-¢—m2611+m2 L
my=0 m;=0 m,=1 n=l 1’1’11! (m,-1)
1851 0) ;>0 (3.9)
m -1 " mgm 2 (181 -my 1) NPT
~ W’ b l"’ ¢]
[H (m2 +r)J H (n+g) Gmo +1, m)+2mp +n-3, n-1, 1 (S)
=0 =0
= e 1=~ —=h+w, A
.. — 1-]-m m,0
I)I,J,V(S)_Z:7L m (1-p) Nij+1-m- m0> Om,0 (S)PJ+mJ 1,B(S) ;i12j>0(3.10)
m=0
B i | kel
Pijr(s)= > A ™"a| ——— Piim, i B(S) . i>j 2 0(3.11
mz_l S+A+P P120 3.4
—n, n+1 oy k k-m 1-8 o
_ doo L pwp Nosip, k+u+a(S)Pj+k,j-1,B(S)‘HJWZ7\, (1-p) ™™
PijB(s)=) A7) (ap)" o 5i>j 20 (3.12)
k=1 n=0 —mn, ntl, (k-m+1-8,,0), Gpno) ,
AP, Mt x+w,£ ’ (8)Pjm,j-1,B(S)

Taking the Laplace Inverse transform of equations (3.6) to (3.12), we have
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M
PO,O,V (t) =€ (3.13)
-\t -wt .
10V(t) Ae { W z o k} ;1>0(3.14)
W k=0
i-1  ime =240y i) i-m-mg-l ' wm ] (i-my—m, -1)
P (D)= > > Yaw(ap)
my=0 m, =0 m, =13, n=l m,: m,
m,; -1 (om0) i-mg-m; -2 (1-6i'm0""|vl) ; i>0 (3.15)
Tlmo] [T wa] oo
=0 g=0 ’ o
i1 i-my-1  i-myg-—m; oo i e R 1 (i-my—m,-1)
Pox(®=3 SOYH wor g
my=0 m,;=0 m,=1 n=l m,: (m, 1)
m; -1 T g2 (=img 1) ;1>0(3.16)
AW, A+, A+pta, A
(H(mz +r)j ( H (n+g)J Gm0+l, m]+:fz+n—;ln—],] (t)
r=0 g=0
i a(kt)i_] "
P t _ -()»+B)t *P ) t L
ir(O= z (i—i—m) e emi () ;i>j20(3.17)
1-8 0 N AW, A Do
1] V(t) ZXIJ o (1 p) ONI‘_]’:X‘i rnamO 6mO(t) J+maJ IB(t) ; ! 2 j>o (3.18)
m=0
+1 i k 1-8
e P NEEL P (O w DA (1p) N
B =Y Y @pyr| S ;1>j20(3.19)
k=1 n=0 n, nt1, (kem+1-8,, ), (B,
Gty o a0 (O %P 1 (0

4. SPECIAL CASES

4.1 When server takes the vacation only, i.e. by lettinga — Oand B — «, obtained results
agree with the results of Indra & Renu [25].

4.2 Along with the case 4.1, p=1 in egns. (3.1) to (3.4), then above described model reduces
to exhaustive service discipline and obtained results coincide with results on Indra [26].

4.3 Along with the case-4.2, when the server is instantaneously available i.e. no discipline of

vacation. Letting w — «in egns. (3.1) to (3.4), we have

Po,o ()= Po,o,v (t)= e™

TR ) & (—1) (m+i+k)! o
HO= a0 ( j(ut)i!e Z k! mz[ m)!(ut)wkj[le“t > (“t)J

K=0 =0 e

1>720
Then results coincide with egn. (10) of Pegden and Rosenshine [27].
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5. PERFORMANCES MEASURES OF THE SYSTEM
5.1 The Laplace transform Pi (s) of the probability P, (t) that exactly i units arrive by time

tis;
P, (s) = Z{ Py (8)+ P (8)(1=8,)+P 5 (s)(1-8;))} = Z O = i>0 (5.1)
. . (kt)' M
And its Inverse Laplace transformis P, (t) =ZP (t)= (5.2)
=0
it A
The Laplace transform of the mean number of the arrivals is Z 1Pi.(s) = - (5.3)
i=0 S

The arrivals follow a Poisson distribution as the probability of the total number of arrivals is

not affected by the vacation times and breakdowns of the server.

> (B 90+ 518, (5)(1-5,)f = (5.4

i=0 j=0

Z Z {Pi,j,v () +P,; g (O(1=8; )+P;; r (D(1- Si,j)} =1
i=0 j=0 (55)
Hence, a verification
And the numerical results for the probabilities of exact number of arrivals when the server

is busy i.e. Z .i.8(D), when the server is on vacation i.e. Z .i.v(D), when the server is
=0 =0

under repair i.e. z JR(t) are computed for different sets of parameter and are
=0

summarized in Table—1. Table-1 is based on the relationship (5.1) and its last column shows

complete agreement with the Table—1 of Pegden and Rosenshine [27].
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Table 1; Probability that exactly i units have arrived by time t (a=1; f=1.5; w=0.8; p=0.4,

t=3)

7\’ ”' | e—)»t ()\’ t)l

1!

DR
=0

D P
=0

IO

>P0)

0.1493612

0.119434486

0.01926033488

0.01066638381

0.14936120510

0.2240418

0.131916122

0.05864113138

0.03348455393

0.22404180761

0.0952209

0.013574327

0.04022048963

0.04142616719

0.09522098419

0.0148725

0.012728398

0.00136811683

0.00077599756

0.01487251306

0.0892350

0.060918281

0.01796349851

0.01035329816

0.08923507835

0.1606231

0.099333419

0.03835008745

0.02293963459

0.16062314105

0.0011106

0.000986361

0.00007893639

0.00004539077

0.00111068823

0.0149942

0.011154984

0.00242938643

0.00140992071

0.01499429119

0.0607268

0.041514843

0.01201341402

0.00719862206

0.06072687934

0.0000737

0.000067000

0.00000425946

0.00000247048

0.00007373054

0.0017695

0.001391323

0.00023887921

0.00013933085

0.00176953315

VW R UVWIRFRIOVVWIFRIUTW|(E

0.0127406

0.009311297

0.00214333146

0.00128600978

0.01274063873

1]2
1]2
1]2
2|3
2|3
2|3
3|4
3|4
3|4
415
415
415
52T

2 The numerical results for the probabilities that exactly j number of customers have been

o0
served when the server is on vacation i.e. » P..(t), when the server is busy i.e.
Lj,V
i=j

ZPLLB(t)are computed for different sets of parameters (A=2,p=3 , w=2, t=2, p=0.4,
ij

0.6, 0.8) and are based on the relationship P,j(t)ZZPi,j(t) where P, ;(t) is defined in

i=j
equation (3.5). By adjusting the value of p, we can control the congestion of the system. And
from the numerical results it is obvious that as p increases the probability of departures

increases when the server is busy. In figs.5.1-5.2, the graphical representation of P.j(t) with

the variation of p has been shown.

. -—--p=0.4
3 AT o p=08 T
< ‘ ~ 2 , - +--p=0.4
S o, . |-O-p=08 g - g =
8S o 2 L % . = @ Ny | p=06
s A SN © o i " & —
5 = N S, \ 0 p=0.8
£ O | / N N o2 ] NS
e 1K = S%
O ol S % Y S o oo B
e | % 23 g
o .= o ke = e YA
> & \ e o - |
£2 *n | 3< N
S - Y + N
§ 8 0\ \ ne_ = | \\;?El\\
o RN
o T I T I T I T I T 1 o T ‘ T ‘ T ‘ T ‘
Number of Departures(j) Number of departures(j)
fig.5.1 fig. 5.2
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5.3 The probability of exactly n customers in the system at time t, denoted by P, (t)can be

expressed in terms of P ,(t). And are based on the relationshipPn(t)=ZPj+n,j(t)where
=0

Pn (t): n, V (t)+Pn, B (t)+Pn, R (t) and Pn, A% (t)

(i) Customers when the server is busyj, i.e. Pn,B(t):sz+n,j,B(t)
=0

(ii) Customers when the server is on vacation, i.e Pn,v(t)ZZijj’V(t)
=0

(iii) Customers when the server is under repair, i.e PH’R(t)ZZij’j,R(t) )
0

P, v(®,Bp®, P, z(t)andP (t)are computed for different values of parameters
(A=2,uy =2,ug =3, w=2, p=0.4). In figs. 5.3 to 5.6, the graphical representation

of P, v (1), P, (1), P, g (t)and P, (t) with the variation of time t has been shown.
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§% \ -0- t=4 9 I P A N P
% T o~ e - A-t=5 wa 7 ) <& N
e ) ‘ / o
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c © c 3 n /&5 \
Y 0 b~ E 0.04 — ,
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> i -B--B- +
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fig. 5.3 fig. 5.4
04 —
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[0] » 4
S ] [} -+ - t=1
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o9 S “Oo-t=2 5 + . -O-t=3
o ’ . -O-t=3 2 B
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5.4 The server’s utilization time, server’s breakdown time and the server’s vacation time i.e.
the fraction of time the server is busy & the fraction of time the server is broken down & the

fraction of time the server is on vacation until time t can also be expressed in terms of
PI,J(t) .

o i
Thus the server’s utilization time is U(t)=ZZR,j,B(t)- And the server’s breakdown’s time

i=0 j=0

in B(t)= ZZPLL z (1) . And the server’s vacation time is V(t)= zzPi,j,V(t)'
i=0 j=0 i=0 j=0

02 —
0.18 —

0.16 —
0.14 —f

012 —f

Utilization time of the server
Utilization time of the server
I

014
I I I I

0.08
I I I I ! s

S

Breakdown rate(a) Repair rate ()

fig. 5.7 fig. 5.8

016 —

012 —|

0.08 —|

Breakdown time of the server
T
Breakdown time of the server

004
I I I I

005
I I I I !
5

e

5 6 1 2

zBreakcjown réte(on) Repair rate(p)

fig. 5.9 fig. 5.10

044 —
04 —
036 —
032 —

028 —

Vacation time of the server

024
I I I I 1

’ Vacatsion rafe(w) ’

fig. 5.11
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In figures 5.7-5.10, Utilization time and Breakdown time decreases with the increase in a
and B and increases with the increase in B and a. And in fig. 5.11 as w increases Vacation

time of the server decreases i.e. the server is instantly available.
CONCLUSION

Repairable server with Bernoulli Schedule is often used for the performance prediction of
many real time systems. We have examined the effect of various parameters namely the
probability p, time, failure rate, repair rate and vacation rate, etc. by taking numerical
illustration. The system performance measures supply better insight into the behavior of a
gueueing system than the probability of exact number of units in the system at a given time,
studied in early literature on queues, in many practical situations and is therefore more
justified.
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