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Abstract: The present work concerned with the transient analysis of a two-dimensional 

state markovian queueing model in which, when a customer has just been served and other 

customers are present, the server accepts a customer with fix probability p or commences a 

vacation of random duration with probability (1- p). Whenever no customers are present, 

after a service completion or a vacation completion, the server always takes a vacation with 

probability one. And also the server is subject to random breakdowns while in operation and 

must be repaired before service can resume. The servers’ repair times, the servers’ service 

times, vacation times, and breakdown times are exponentially distributed. Arriving units are 

in Poisson stream. And it is shown that the transient state probabilities can be easily 

computed with recurrence relations. In order to validate the analytical approach, we 

compute numerical results. Graphical representation is also performed to explore the effect 

of different parameters.  
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1. INTRODUCTION 

The most classical case in a queue assumes a reliable machine or server; however, in 

practice we often meet the cases where the servers may fail and can be repaired. Besides, 

server breakdowns are considered as the most natural cause of service interruptions. Server 

breakdowns phenomena can be encountered in the area of computer, communication 

network and flexible manufacturing systems, etc. The performance of a system may be 

heavily affected by the service station breakdowns and limited repair capacity; as such 

queueing systems with a repairable server are of worth investigation from the performance 

prediction viewpoint. The problem of queueing systems with server failures is of continuing 

interest to many researchers. Several models have been built and analyzed. White and 

Christie [1] introduced queueing systems with service interruptions. Further these results 

are extended by many researchers like Aissani and Artalejo[2], Avi-Itzhak et al.[3], Gaver[4], 

Thirvengadam[5], Takine and Sengupta[6], Federgruen and Green[7] and Mitrany and Avi-

Itzhak[8]. Also, Wang [9, 10, 11] extended the markovian queueing model under the N 

policy with server breakdowns and summarized the major developments in this area. 

Krishna Kumar et al. [12] also considered this variant queueing model with an unreliable 

server.  

Also, in many queueing models the server becomes unavailable for occasional intervals of 

time. In literature, a time interval when the server is either unavailable or idle is called 

vacation period. Queueing model with server vacations have attracted much attention from 

numerous researchers since Levy and Yechiali [13]. Server vacations are useful for the 

systems in which the server wants to utilize his idle time for different purposes. An excellent 

survey of queueing systems with server vacations was found in Doshi [14]. Cooper [15], 

Takagi [16] and Tian and Zhang [17] also presented various vacation models. Further, 

various authors studied queues with server vacations under various vacation policies 

including Bernoulli schedules. The classical vacation scheme with Bernoulli schedule in 

which the server serves the new customer with probability p or takes a vacation with 

probability (1-p) was originated and developed significantly by Keilson and Servi [18]. The 

advantage of the Bernoulli schedule is the existence of a control parameter p. By adjusting 

the value of p, we can control the congestion of the system. Various aspects of Bernoulli 
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vacation models for single server queueing systems have also been studied by Servi [19] and 

Ramaswamy and Servi [20]. 

The queueing models under random breakdowns have also been studied by including server 

vacations. Queueing models with server breakdowns and vacations accommodate the real-

world situations more closely.  Grey et al. [21] considered a vacation queueing model with 

service breakdowns. In this respect, Ke [22, 23] has done good deal of work on batch arrival 

queue with server breakdown and multiple vacations. All of the above mentioned 

contributions are only confined to results describing steady-state operation and rely on 

different assumptions for the queueing models. But, in this paper we put emphasis on 

transient analysis because steady state measures do not reveal the complete picture of the 

system behaviour.  

In many potential applications of queueing theory, the practitioner needs to know how the 

system will operate up to some time instant t. Further, if the system is empty initially, the 

fraction of time the server is busy and the initial rate of output etc., will be below the steady 

state values and hence the use of steady state results to obtain these measures is not 

appropriate. Thus, the investigation of the transient behaviour of the queueing model is also 

important from the point of view of theory as well as applications. Krishna Kumar et al. [24] 

investigated the transient behaviour of M/M/1 queueing model with catastrophes & 

breakdowns. 

In the present work, we consider a single-server two-dimensional markovian queue with 

Repairable server and Bernoulli Schedule for the probability that exactly i arrivals and j 

services occur over a time interval of length t in a queueing model that the server is on 

vacation at the beginning of the interval, in order to obtain some analytical results that do 

not appear to be present in the literature. The principal purpose of our work is to realize an 

extensive analysis of the system from both queueing and reliability points of view. Since 

many applications of queueing theory involve queues which are emptied and restarted 

periodically and thus not susceptible to analysis using the well-known equilibrium results, 

there are many potential applications for results obtained. 

The rest of this paper is organized as follows. Section 2 gives a relatively formal description 

of the queueing model. In Section 3, we define the two-dimensional state model and derive 

the difference-differential equations and time dependent solution is also obtained for our 
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model. Some special cases are discussed in Section 4. Section 5 presents the performances 

measures with numerical results where we provide a variety of tables for different values of 

the model parameters and also we have numerically verified our results in some special 

cases that exists in the literature. Some graphs are presented showing the effect of model 

parameters on some performance measures in Section 6. 

2. MODEL DESCRIPTION 

2.1 Assumptions and Notations: 

♦ The arrivals follow a Poisson distribution with parameter λ. 

♦ The service times are exponentially distributed with parameter µ. 

♦ The vacation time, mean life time and mean repair time of the service channel follow an 

exponential distribution with parameters w, α and β respectively. 

♦ Various stochastic processes involved in the system are statiscally independent. 

♦ Service discipline is First Come First Served (FCFS). 

 Initially, there are no units in the system and the server is on vacation, i.e. 

 0,0,V 0,0,B 0,0,RP (0)=1 ; P (0)=0 ; P (0) 0=                                                      (2.1) 
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3. THE TWO-DIMENSIONAL STATE MODEL 
 Nomenclature 

i, j, VP (t) = The probability that there are exactly i arrivals and j departures by time t and the 

server is on vacation,                                                                                                   j≤i 

i, j, BP (t) = The probability that there are exactly i arrivals     and j departures by time t and 

the server is busy in relation to the queue,                                                                        
j<i 

i, j, RP (t) = The probability that there are exactly i arrivals and j departures by time t and the 

server is broken down and is under repair,                                                                  j<i 
(t)P ji, =  The probability that there are exactly i arrivals and j departures by time t,                    

j≤i 
3.1 The difference-differential equations governing   the system are: 
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d
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dt −= − + −
                                                ; i ≥0   (3.1) 
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Taking the Laplace Inverse transform of equations (3.6) to (3.12), we have 
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4.  SPECIAL CASES 

4.1 When server takes the vacation only, i.e. by letting ∞→→ β and0α , obtained results 

agree with the results of Indra & Renu [25]. 

4.2 Along with the case 4.1, p=1 in eqns. (3.1) to (3.4), then above described model reduces 

to exhaustive service discipline and obtained results coincide with results on Indra [26]. 

4.3 Along with the case-4.2, when the server is instantaneously available i.e. no discipline of 

vacation. Letting ∞→w in eqns. (3.1) to (3.4), we have 
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Then results coincide with eqn. (10) of Pegden and Rosenshine [27].                                                                                                                                
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5. PERFORMANCES MEASURES OF THE SYSTEM 
 5.1 The Laplace transform i•P (s) of the probability i•P (t)  that exactly i units arrive by time 

t is;       

 { }
ii i

i i,j,V i,j,B i,j i,j,R i,j i,j i 1
j 0 j 0

λ
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The arrivals follow a Poisson distribution as the probability of the total number of arrivals is 

not affected by the vacation times and breakdowns of the server. 

 
                                                                                                                                                             (5.4)                                             
 
 
 

                                                                                    (5.5) 
Hence, a verification 

 And the numerical results for the probabilities of exact number of arrivals when the server 

is busy i.e. 
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under repair i.e.
i
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P (t)∑ , are computed for different sets of parameter and are 

summarized in Table–1. Table-1 is based on the relationship (5.1) and its last column shows 

complete agreement with the Table–1 of Pegden and Rosenshine [27].     
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P (t) P (t)(1 δ )+P (t)(1 δ ) 1
∞

= =

+ − − =∑∑
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Table 1; Probability that exactly i units have arrived by time t (α=1; β=1.5; w=0.8; p=0.4, 

t=3) 

λ µ i 
i!

t)(λe iλt−
 

i

i, j, V
j=0

P (t)∑  
i

i, j, B
j=0

P (t)∑  
i

i, j, R
j=0

P (t)∑  
i

i, j
j=0

P (t)∑  

1 2 1 0.1493612 0.119434486 0.01926033488 0.01066638381   0.14936120510   
1 2 3 0.2240418   0.131916122  0.05864113138   0.03348455393  0.22404180761   
1 2 5 0.0952209 0.013574327 0.04022048963 0.04142616719 0.09522098419 
2 3 1 0.0148725   0.012728398   0.00136811683  0.00077599756 0.01487251306  
2 3 3 0.0892350 0.060918281  0.01796349851  0.01035329816  0.08923507835  
2 3 5 0.1606231 0.099333419 0.03835008745 0.02293963459 0.16062314105 
3 4 1 0.0011106 0.000986361  0.00007893639  0.00004539077   0.00111068823   
3 4 3 0.0149942 0.011154984   0.00242938643   0.00140992071   0.01499429119   
3 4 5 0.0607268 0.041514843 0.01201341402 0.00719862206 0.06072687934 
4 5 1 0.0000737 0.000067000   0.00000425946   0.00000247048   0.00007373054  
4 5 3 0.0017695 0.001391323  0.00023887921   0.00013933085  0.00176953315   
4 5 5 0.0127406 0.009311297 0.00214333146 0.00128600978 0.01274063873 
5.2 The numerical results for the probabilities that exactly j number of customers have been 

served when the server is on vacation i.e. i, j, V
i=j

P (t)
∞

∑ , when the server is busy i.e. 

i, j, B
i=j

P (t)
∞

∑ are computed for different sets of parameters ( λ 2, µ 3 = = , w=2, t=2, p=0.4, 

0.6, 0.8) and are based on the relationship • j i, j
i=j

P (t)= P (t)
∞

∑  where i, jP (t)   is defined in 

equation (3.5). By adjusting the value of p, we can control the congestion of the system. And 

from the numerical results it is obvious that as p increases the probability of departures 

increases when the server is busy. In figs.5.1-5.2, the graphical representation of (t)P j•  with 

the variation of p has been shown.  
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5.3 The probability of exactly n customers in the system at time t, denoted by nP (t) can be 

expressed in terms of i, jP (t) . And are based on the relationship n j+n, j
j=0

P (t)= P (t)
∞

∑ where 

n n, V n, B n, RP (t)=P (t)+P (t)+P (t) and n, VP (t)  

(i)      Customers when the server is busy, i.e. n, B j+n, j, B
j=0

P (t)= P (t)
∞

∑  

(ii)     Customers when the server is on vacation, i.e n, V j+n, j, V
j=0

P (t)= P (t)
∞

∑  

(iii)     Customers when the server is under repair, i.e n, R j+n, j, R
j=0

P (t)= P (t)
∞

∑ . 

n, VP (t) , n, BP (t), n, RP (t) and nP (t) are computed for different values of parameters 

( 3µ 2,µ2,λ B V === , w=2, p=0.4). In figs. 5.3 to 5.6, the graphical representation 

of n, VP (t) , n, BP (t) , n, RP (t) and nP (t) with the variation of time t has been shown. 
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5.4 The server’s utilization time, server’s breakdown time and the server’s vacation time i.e. 

the fraction of time the server is busy & the fraction of time the server is broken down & the 

fraction of time the server is on vacation until time t can also be expressed in terms of 

i, jP (t) .   

Thus the server’s utilization time is U(t)=
i

i, j, B
i=0 j=0

P (t)
∞

∑∑ . And the server’s breakdown’s time 

in B(t)= 
i

i, j, R
i=0 j=0

P (t)
∞

∑∑ . And the server’s vacation time is V(t)= 
i

i, j, V
i=0 j=0

P (t)
∞

∑∑ .    
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In figures 5.7-5.10, Utilization time and Breakdown time decreases with the increase in α 

and β and increases with the increase in β and α. And in fig. 5.11 as w increases Vacation 

time of the server decreases i.e. the server is instantly available. 

CONCLUSION 

Repairable server with Bernoulli Schedule is often used for the performance prediction of 

many real time systems. We have examined the effect of various parameters namely the 

probability p, time, failure rate, repair rate and vacation rate, etc. by taking numerical 

illustration. The system performance measures supply better insight into the behavior of a 

queueing system than the probability of exact number of units in the system at a given time, 

studied in early literature on queues, in many practical situations and is therefore more 

justified. 
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