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1. Introduction 

The main focus of this article how do solve optimal problem by direct and indirect adjoint 

approach? 

Optimal control (OC) deals with the problem of finding a control law for a given system such that a 

certain optimality criterion is achieved. Any control problem includes a cost functional that is a 

function of state and control variables. An optimal control is a set of differential equations describing 

the paths of the control variables that maximize (minimize) the cost functional. The previous many 

articles deals with OC derived by Pontryagain’s Maximum Principle (PMP) or by Hamilton Jacobean 

equations Method (HJM). This paper deals with adjoint approach. OC is the heart of many 

optimization applications in different areas, particularly in engineering and economics 
[7], [12]

 

1.2 Some preliminary concepts, assumptions, definitions and theorems 

Optimal Control Problem (OCP) is described by a number of parameters, consider 

𝑥 =  𝑥1 , 𝑥2 , … , 𝑥𝑛  , which evolves according to a state equation, 

𝑥  𝑡 = 𝑔 𝑡, 𝑥 𝑡 , 𝑢 𝑡   𝑤𝑕𝑒𝑟𝑒 𝑢 =  𝑢1 , 𝑢2 , … , 𝑢𝑛  , represents the control exercised on the system.  

This control vector should satisfies various types of constraints depending on the nature of the 

problem, in this paper we only consider the restriction  𝑢 𝑡 ∈ 𝑈𝑎𝑑𝑗 ⊆ ℝ𝑚  ∀ 𝑡, the state equation is 

also complemented with initial or final condition such as 𝑥 0 = 𝑥0  𝑎𝑛𝑑 𝑥 𝑡 = 𝑥𝑇 , 𝑤𝑕𝑒𝑟𝑒 𝑇, it is 

the time horizon what we are considering, and the objective functional measuring  how good a given 

control 𝑢 𝑖𝑠 
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The form of objective function is  max𝐹  𝑥, 𝑢 =  𝑓
𝑇

0
 𝑡, 𝑥 𝑡 , 𝑢 𝑡   𝑤𝑕𝑒𝑟𝑒 𝑓:  0, 𝑇 × ℝ𝑚 × ℝ𝑛 ⟶

ℝ, measures the rate how good a given control  𝑢 𝑖𝑠 ? A pair  𝑥, 𝑢 , it is said to be feasible or 

admissible, if the following conditions are satisfied 
[9]

 

a. Constraints on the control 𝑢 𝑡 ∈ 𝑈𝑎𝑑𝑗 ⊆ ℝ𝑚  ∀ 𝑡 ∈  0, 𝑇  

b. State Law  𝑥  𝑡 = 𝑔 𝑡, 𝑥 𝑡 , 𝑢 𝑡  ∀ 𝑡 ∈  0, 𝑇  

c. End point conditions 𝑥 0 = 𝑥0  𝑎𝑛𝑑 𝑥 𝑡 = 𝑥𝑇 , and then the OCP is 

max𝐹  𝑥, 𝑢 =  𝑓
𝑇

0
 𝑡, 𝑥 𝑡 , 𝑢 𝑡    

Subject to 𝑢 𝑡 ∈ 𝑈𝑎𝑑𝑗  

  𝑥  𝑡 = 𝑔 𝑡, 𝑥 𝑡 , 𝑢 𝑡   

With  𝑥 0 = 𝑥0  𝑎𝑛𝑑 𝑥 𝑡 = 𝑥𝑇  

1.3 The Hamiltonian and Multipliers 

Let max𝐹  𝑥, 𝑢 =  𝑓
𝑇

0
 𝑡, 𝑥 𝑡 , 𝑢 𝑡  , for all pairs  𝑥, 𝑢 , such that 𝑥  𝑡 = 𝑔 𝑡, 𝑥 𝑡 , 𝑢 𝑡  , together 

with appropriate conditions at the end points, but the state equation may be considered as a point wise 

constraint that can be treated by introducing a multiplier or co state  𝜆 𝑡  

Consider the co state function 𝜆:  0, 𝑇 ⟶ ℝ𝑛 , and equation above are given the Lagrangian problem 

of the following 

𝐿 𝑥, 𝑢, 𝜆, 𝑥  =   𝑓 𝑡, 𝑥 𝑡 , 𝑢 𝑡  + 𝜆 𝑡  𝑔 𝑡, 𝑥 𝑡 , 𝑢 𝑡   − 𝑥  𝑡  
𝑇

0
𝑑𝑡     (1) 

Take  𝐺 𝑥, 𝑢, 𝜆, 𝑥  =  𝑓 𝑡, 𝑥 𝑡 , 𝑢 𝑡  + 𝜆 𝑡  𝑔 𝑡, 𝑥 𝑡 , 𝑢 𝑡   − 𝑥  𝑡      (2) 

From (2) we get Euler Lagrangian equations system can be derived by 

𝜕

𝜕𝑥
 𝐺 𝑥, 𝑢, 𝜆, 𝑥  =

𝜕

𝜕𝑥
 𝑓 𝑡, 𝑥 𝑡 , 𝑢 𝑡  + 𝜆 𝑡  𝑔 𝑡, 𝑥 𝑡 , 𝑢 𝑡   − 𝑥  𝑡    

⟹
𝜕

𝜕𝑥
 𝐺 𝑥, 𝑢, 𝜆, 𝑥  = 𝑓𝑥   𝑡, 𝑥 𝑡 , 𝑢 𝑡  + 𝜆 𝑡  𝑔𝑥 𝑡, 𝑥 𝑡 , 𝑢 𝑡    = 0    (3)  

𝜕

𝜕𝑢
 𝐺 𝑥, 𝑢, 𝜆, 𝑥  =

𝜕

𝜕𝑢
 𝑓 𝑡, 𝑥 𝑡 , 𝑢 𝑡  + 𝜆 𝑡  𝑔 𝑡, 𝑥 𝑡 , 𝑢 𝑡   − 𝑥  𝑡    

⟹
𝜕

𝜕𝑢
 𝐺 𝑥, 𝑢, 𝜆, 𝑥  = 𝑓𝑢   𝑡, 𝑥 𝑡 , 𝑢 𝑡  + 𝜆 𝑡  𝑔𝑢 𝑡, 𝑥 𝑡 , 𝑢 𝑡    = 0    (4)  

𝜕

𝜕𝜆
 𝐺 𝑥, 𝑢, 𝜆, 𝑥  =

𝜕

𝜕𝜆
 𝑓 𝑡, 𝑥 𝑡 , 𝑢 𝑡  + 𝜆 𝑡  𝑔 𝑡, 𝑥 𝑡 , 𝑢 𝑡   − 𝑥  𝑡    

⟹
𝜕

𝜕𝜆
 𝐺 𝑥, 𝑢, 𝜆, 𝑥  = 𝑔 𝑡, 𝑥 𝑡 , 𝑢 𝑡  − 𝑥  𝑡 = 0      (5)  

𝜕

𝜕𝑥 
 𝐺 𝑥, 𝑢, 𝜆, 𝑥  =

𝜕

𝜕𝑥 
 𝑓 𝑡, 𝑥 𝑡 , 𝑢 𝑡  + 𝜆 𝑡  𝑔 𝑡, 𝑥 𝑡 , 𝑢 𝑡   − 𝑥  𝑡    

⟹
𝜕

𝜕𝑥 
 𝐺 𝑥, 𝑢, 𝜆, 𝑥  = −𝜆 𝑡 = 0         (6) 
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From (3) to (6) we get the following three equations 

𝑑

𝑑𝑡
 −𝜆 𝑡  = 𝑓𝑥  𝑓 𝑡, 𝑥 𝑡 , 𝑢 𝑡  + 𝜆 𝑡  𝑔𝑥 𝑡, 𝑥 𝑡 , 𝑢 𝑡         

  

⟹ 𝑓𝑥  𝑓 𝑡, 𝑥 𝑡 , 𝑢 𝑡  + 𝜆 𝑡  𝑔𝑥 𝑡, 𝑥 𝑡 , 𝑢 𝑡    + 𝜆  𝑡 = 0     (7) 

𝑓𝑢   𝑡, 𝑥 𝑡 , 𝑢 𝑡  + 𝜆 𝑡  𝑔𝑢 𝑡, 𝑥 𝑡 , 𝑢 𝑡    = 0       (8) 

𝑔 𝑡, 𝑥 𝑡 , 𝑢 𝑡  − 𝑥  𝑡 = 0          (9) 

Equations (7) to (9) determined the conditions for the control to maximize (minimize) the objective 

functions 

Definition – 1.4:  

The control Hamiltonian function ℋ, of the OCP is defined as: 

ℋ:   0,∞  × ℝ𝑚 × ℝ𝑛 × ℝ𝑛∗ ⟶ℝ 𝑤𝑖𝑡𝑕 ℋ 𝑡, 𝑥, 𝑢, 𝜆 = 𝑓 𝑡, 𝑥, 𝑢 + 𝜆𝑔 𝑡, 𝑥, 𝑢   

Using this definition, and we rewrite the three equations (7), (8) and (9) 

a. Adjoint Condition 

𝜆  𝑡 = −
𝜕

𝜕𝑥
ℋ 𝑡, 𝑥 𝑡 , 𝑢 𝑡 , 𝜆 𝑡    

b. Optimality Condition 
𝜕

𝜕𝑢
ℋ 𝑡, 𝑥 𝑡 , 𝑢 𝑡 , 𝜆 𝑡  = 0  

c. State equation 

𝑥  𝑡 = 𝑔 𝑡, 𝑥 𝑡 , 𝑢 𝑡    

d. Transversals conditions 

If we set 𝑥 𝑇 , to be free then we have the following conditions corresponding to the bounder 

(Initial value) case problem 𝜆 𝑇 = 0 

These four conditions are necessary conditions for an OCP 
[9]

 

Theorem – 1.5  

Let   𝑓 𝑎𝑛𝑑 𝑔, they are linear convex functions in  𝑥, 𝑢 , ∀ 𝑓𝑖𝑥𝑒𝑑 𝑡 ∈  0, 𝑇 . Then every solution of 

the system of optimality with the appropriate end point conditions including transversality will be an 

optimal solution of the control problem 
[9]

 

1.6. Pontryagain’s maximum or minimum principle (PMP) 

PMP is used in OCP to find the best possible control for taking a system from one state to another, 

particularly in the presence of constraints for the state or input control. This principle sates informally 

that the Hamiltonian must be minimized or maximized over 𝑈, the set of all permissible controls. 

If 𝑢∗ ∈ 𝑈, it is the optimal control for the problem, then the principle states that 
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ℋ 𝑡, 𝑥∗ 𝑡 , 𝑢∗ 𝑡 , 𝜆∗ 𝑡  ≤ ℋ 𝑡, 𝑥 𝑡 , 𝑢 𝑡 , 𝜆 𝑡  , ∀ 𝑢 ∈ 𝑈, 𝑡 ∈  0, 𝑇  𝑤𝑕𝑒𝑟𝑒 𝑥∗ ∈ 𝐶(1) 0, 𝑇 , it is the 

optimal state trajectory and 𝜆∗ ∈  0, 𝑇 , it is the optimal co state trajectory and considers the OCP in 

maximum form: 

max𝐹  𝑥, 𝑢 =  𝑓
𝑇

0
 𝑡, 𝑥 𝑡 , 𝑢 𝑡  𝑑𝑡+S 𝑥 𝑇 , 𝑇  

Subject to 𝑥  𝑡 = 𝑔 𝑡, 𝑥 𝑡 , 𝑢 𝑡  , 𝑥 0 = 𝑥0 , 𝑤𝑕𝑒𝑟𝑒 S 𝑥 𝑇 , 𝑇 , and it is known as the salvage 

functions. 

Suppose that 𝑥 𝑡 , 𝑢 𝑡 , represent the state trajectory and optimal control respectively and then there 

exists an adjoint 𝜆 𝑡 satisfies the following conditions 
[9]

 

a. Adjoint Condition 

𝜆 ∗ 𝑡 = −
𝜕

𝜕𝑥
ℋ 𝑡, 𝑥∗ 𝑡 , 𝑢∗ 𝑡 , 𝜆∗ 𝑡    

b. State equation 

𝑥 ∗ 𝑡 = 𝑔 𝑡, 𝑥∗ 𝑡 , 𝑢∗ 𝑡   𝑤𝑖𝑡𝑕  𝑥 0 = 𝑥0 

c. Transversals conditions 

𝜆∗ 𝑡 = 𝑆𝑥 𝑥
∗ 𝑇 , 𝑇   

d. The maximum condition 

ℋ 𝑡, 𝑥∗ 𝑡 , 𝑢∗ 𝑡 , 𝜆∗ 𝑡  ≤ ℋ 𝑡, 𝑥 𝑡 , 𝑢 𝑡 , 𝜆 𝑡    

1.7. Bounded Control 

Let the OCP 
[8]

 

max𝐹  𝑥, 𝑢 =  𝑓
𝑇

0
 𝑡, 𝑥 𝑡 , 𝑢 𝑡  𝑑𝑡+S 𝑥 𝑇 , 𝑇  

Subject to 𝑥  𝑡 = 𝑔 𝑡, 𝑥 𝑡 , 𝑢 𝑡  , 𝑥 0 = 𝑥0 

With  𝑎 ≤ 𝑢 𝑡 ≤ 𝑏 , and hence the conditions for optimality for bounded controls are 

given: 

a. State equation 

𝑥  𝑡 = 𝑔 𝑡, 𝑥 𝑡 , 𝑢 𝑡   𝑤𝑖𝑡𝑕 𝑥 0 = 𝑥0  

b. Adjoint Condition 

𝜆  𝑡 = −
𝜕

𝜕𝑥
ℋ 𝑡, 𝑥 𝑡 , 𝑢 𝑡 , 𝜆 𝑡    

c. Transversals conditions 

𝜆 𝑡 = 𝑆𝑥 𝑥 𝑇 , 𝑇   

d. The optimality Condition 

 
 
 

 
 𝑢∗ = 𝑎  𝑖𝑓 

𝜕

𝜕𝑢
ℋ 𝑡, 𝑥 𝑡 , 𝑢 𝑡 , 𝜆 𝑡  < 0

𝑎 < 𝑢∗ < 𝑏 𝑖𝑓 
𝜕

𝜕𝑢
ℋ 𝑡, 𝑥 𝑡 , 𝑢 𝑡 , 𝜆 𝑡  = 0

𝑢∗ = 𝑏  𝑖𝑓 
𝜕

𝜕𝑢
ℋ 𝑡, 𝑥 𝑡 , 𝑢 𝑡 , 𝜆 𝑡  > 0

   

Definition – 1.8:  

The point 𝑡𝑖
′𝑠, at which the control switches between the minimum and the maximum is called the 

switching time and if the Hamiltonian problem is 
[8]
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ℋ 𝑡, 𝑥 𝑡 , 𝑢 𝑡 , 𝜆 𝑡  = 𝑓1 𝑡, 𝑥 + 𝑢𝑓2 𝑡, 𝑥 + 𝜆 𝑡  𝑔1 𝑡, 𝑥 + 𝑢𝑔2 𝑡, 𝑥   , that is 

ℋ 𝑡, 𝑥 𝑡 , 𝑢 𝑡 , 𝜆 𝑡  = 𝑓1 𝑡, 𝑥 + 𝜆 𝑡 𝑔1 𝑡, 𝑥 + 𝑢 𝑡  𝑓2 𝑡, 𝑥 + 𝜆 𝑡 𝑔2 𝑡, 𝑥   , and then 

a. It contains no information about 𝑢, and then the function  𝜓 𝑡 =
𝜕

𝜕𝑥
ℋ 𝑡, 𝑥 𝑡 , 𝑢 𝑡 , 𝜆 𝑡  , it 

can be zero at some finite number of 𝑡𝑖
′𝑠 and also the optimality Condition 

 

𝑢∗ = 𝑎  𝑖𝑓 𝜓 𝑡 < 0

𝑎 < 𝑢∗ < 𝑏 𝑖𝑓 𝜓 𝑡 = 0

𝑢∗ = 𝑏  𝑖𝑓 𝜓 𝑡 > 0

  , and hence we get 

𝜓 𝑡 = 𝑓2 𝑡, 𝑥 +  𝜆 𝑡 𝑔2 𝑡, 𝑥 , it is called the switching function 

Definition – 1.9:  

A control 𝑢 𝑡 ∈ 𝑈𝑎𝑑𝑗 , it is called 𝑩𝒂𝒏𝒈 𝑩𝒂𝒏𝒈, if for each  𝑡 ∈  0, 𝑇 , 𝑎𝑛𝑑 𝑒𝑎𝑐𝑕 𝑖𝑛𝑑𝑒𝑥 𝑖 = 1,… ,𝑚, 

we have   𝑢𝑖 𝑡  = 1  𝑤𝑕𝑒𝑟𝑒 𝑢 𝑡 =  𝑢1 𝑡 , … , 𝑢𝑚  𝑡   
[8]

 

2. Analysis of constrained OCP 

OCP with state variable inequality constraints are an important role in mechanics, aerospace, 

management science and economics. These problems are not solved easily and even the theory is not 

unambiguous, since, there are various forms of the necessary and sufficient optimality condition. 

More specially, we deal with problems with both pure and mixed state variable constraints. Pure 

constrains are inequality constraints expressed only in terms of the state variables and possibly time. 

Mixed constraints are constraints on control variables that may depend on the state variables and time 
[10]

 

1.1 Problems with mixed inequality constraints 

OCP with state inequality constraint arise frequently in practical applications. Consider the problem to 

find a piecewise continuous control   𝑢∗ ∈ 𝐶 0, 𝑇  with associated response   𝑥∗ ∈ 𝐶(1) 0, 𝑇 , and a 

terminal time 𝑇∗ ∈  0, 𝑇 , such that the following the constraints are satisfied and the cost function 

takes on its maximum value 

max𝐹 =  𝑓
𝑇

0
 𝑡, 𝑥, 𝑢 𝑑𝑡  

Subject to  𝑥  𝑡 = 𝑔 𝑡, 𝑥 𝑡 , 𝑢 𝑡  , 𝑥 0 = 𝑥0 , 𝑥 𝑇 = 𝑥𝑇  

With 𝑕 𝑡, 𝑥 𝑡 , 𝑢 𝑡  ≤ 0 

Assume that the components of 𝑕 𝑡, 𝑥 𝑡 , 𝑢 𝑡   depend explicitly on the control 𝑢 and the following 

constraint qualification condition holds 

  
𝜕

𝜕𝑢
𝑕, 𝑑𝑖𝑎𝑔 (𝑕)            (10) 

It is full rank. In other words, the gradient with respect to  𝑢 , of all the active 

constraint 𝑕 𝑡, 𝑥 𝑡 , 𝑢 𝑡  , it must be linearly independent. Possible ways of attempting to solve OCP 

with mixed inequality constraints are to form a Lagrangian function 𝐿, by adjoining 𝑕 𝑡, 𝑥 𝑡 , 𝑢 𝑡   to 

the Hamiltonian function ℋ, with Lagrangian multiplier vector function 𝜇 
[3]
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That is 𝐿 𝑡, 𝑥, 𝑢, 𝜆, 𝜇 =  ℋ 𝑡, 𝑥, 𝑢, 𝜆 + 𝜇𝑕ℋ 𝑡, 𝑥, 𝑢  𝑤𝑕𝑒𝑟𝑒  

ℋ 𝑡, 𝑥, 𝑢, 𝜆 = 𝑓 𝑡, 𝑥 𝑡 , 𝑢 𝑡  + 𝜆𝑔 𝑡, 𝑥 𝑡 , 𝑢 𝑡    

2.2.1. Necessary conditions for optimality 

max𝐹  𝑥, 𝑢 =  𝑓
𝑇

0
 𝑡, 𝑥 𝑡 , 𝑢 𝑡  𝑑𝑡  

Subject to 𝑥  𝑡 = 𝑔 𝑡, 𝑥 𝑡 , 𝑢 𝑡  , 𝑥 0 = 𝑥0 , 𝑥 𝑇 = 𝑥𝑇  

With 𝑕 𝑡, 𝑥 𝑡 , 𝑢 𝑡  ≤ 0 

And also with fixed time and free terminal time and where  𝑓, 𝑔 𝑎𝑛𝑑 𝑕  they are continuously 

differentiable with respect to   𝑡, 𝑥, 𝑢  𝑜𝑛   0,∞  × ℝ𝑚 × ℝ𝑛  and suppose that 𝑢∗ ∈ 𝐶 0, 𝑇 , it is a 

maximum for the problem and let  𝑥∗ denotes the optimal response. If the constraints qualification 

conditions are hold for every  𝑡 ∈  0, 𝑇 , and then we have 

a. The function ℋ 𝑡, 𝑥∗ 𝑡 , 𝑢∗ 𝑡 , 𝜆∗ 𝑡   attains its maximum on 𝑈 𝑥∗ 𝑡 , 𝑡  𝑎𝑡  

𝑢 = 𝑢∗ 𝑡 , ∀ 𝑡 ∈  0, 𝑇  𝑎𝑛𝑑 𝑎𝑙𝑠𝑜 ℋ 𝑡, 𝑥∗ 𝑡 , 𝑢∗ 𝑡 , 𝜆∗ 𝑡  ≥ ℋ 𝑡, 𝑥∗ 𝑡 , 𝑢 𝑡 , 𝜆 𝑡  , ∀ 𝑢 ∈

𝑈  𝑥∗ 𝑡 , 𝑡   𝑤𝑕𝑒𝑟𝑒 𝑈  𝑥 𝑡 , 𝑡  =  𝑢 𝑡 ∈ ℝ𝑛 |𝑕 𝑡, 𝑥 𝑡 , 𝑢 𝑡  ≤ 0   

b. The quadruple   𝑡, 𝑥∗, 𝑢∗, 𝜆∗  satisfies the equations 

𝑥 ∗ 𝑡 = 𝐿 𝑡, 𝑥, 𝑢, 𝜆, 𝜇 ; 𝜆 ∗ 𝑡 = 𝐿𝑥 𝑡, 𝑥, 𝑢, 𝜆, 𝜇  𝑎𝑛𝑑 𝐿𝑢 𝑡, 𝑥, 𝑢, 𝜆, 𝜇 = 0 , at each instant 𝑡 of 

continuity of  𝑢∗ 

c. The vector function  𝜇∗, it is continuous at each instant of continuity of  𝑢∗ and satisfies 

𝜇 𝑡 𝑕 𝑡, 𝑥 𝑡 , 𝑢 𝑡  ≤ 0  𝑓𝑜𝑟 𝜇 𝑡 ≥ 0  

2.2.2 Extension to General State of Terminal Constraints 

The maximum principle given in above conditions can be extended to the case where general terminal 

constraints are specified on the state variables as 

𝑎 𝑥 𝑇 , 𝑇 ≥ 0  𝑎𝑛𝑑 𝑏 𝑥 𝑇 , 𝑇 = 0 , and a terminal term is added to the cost functional as 

max𝐹  𝑥, 𝑢 =  𝑓
𝑇

0
 𝑡, 𝑥 𝑡 , 𝑢 𝑡  𝑑𝑡 + 𝑆 𝑥 𝑇 , 𝑇 ,𝑤𝑕𝑒𝑟𝑒 𝑎, 𝑏 𝑎𝑛𝑑 𝑆  , they are continuously 

differentiable with respect to    𝑡, 𝑥  𝑓𝑜𝑟 𝑎𝑙𝑙  𝑡, 𝑥 ∈  0, 𝑇 × ℝ𝑚 , and suppose that the terminal 

constraints satisfy the constraint qualification conditions 
[13] 𝑎𝑛𝑑  

𝜕𝑎

𝜕𝑥
𝑑𝑖𝑎𝑔 (𝑎)

𝜕𝑏

𝜕𝑥
0

 , it is full rank. Then 

in addition, to the necessary condition of optimality there exists Lagrangian multiplier vectors  𝛼 ∈

ℝ𝑙 , 𝛽 ∈ ℝ𝑙 ′ , such that  𝜆 𝑇 = 𝑆𝑥 𝑥 𝑇 , 𝑇 + 𝛼𝑎𝑥 𝑥 𝑇 , 𝑇 + 𝛽𝑏𝑥 𝑥 𝑇 , 𝑇   𝑤𝑕𝑒𝑟𝑒 𝛼 ≥

0, 𝛼𝑎 𝑥 𝑇 , 𝑇 = 0  

2.3. Problems with pure state inequality constraints 
[12] 

Consider the function 𝑘 𝑡, 𝑥  𝑤𝑕𝑒𝑟𝑒 𝑘 =  0, 𝑇 × ℝ𝑛 , and then the pure state constraints 𝑘 𝑡, 𝑥 ≥ 0 

does not explicitly depend on  𝑢 𝑎𝑛𝑑 𝑥  they can be controlled only indirectly. It is therefore, 

convenient to differentiate 𝑘 𝑡, 𝑥  with respect to time  𝑡 as many times as required until it contains a 

control variable. 
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Let us for the moment define  𝑘𝑖 𝑡, 𝑥, 𝑢 , 𝑓𝑜𝑟 𝑖 = 1, 2, … , 𝑝 , recursively as follows 

 
  
 

  
 

𝑘0 𝑡, 𝑥, 𝑢 = 𝑘 𝑡, 𝑥                                                                  

𝑘1 𝑡, 𝑥, 𝑢 =
𝑑

𝑑𝑥
𝑘 = 𝑘𝑥 𝑡, 𝑥 𝑔 𝑡, 𝑥, 𝑢 + 𝑘𝑡 𝑡, 𝑥              

𝑘2 𝑡, 𝑥, 𝑢 =
𝑑

𝑑𝑥
𝑘1 = 𝑘𝑥

1 𝑡, 𝑥 𝑔 𝑡, 𝑥, 𝑢 + 𝑘𝑡
1 𝑡, 𝑥            

⋮

 𝑘𝑝 𝑡, 𝑥, 𝑢 =
𝑑

𝑑𝑥
𝑘𝑝−1 = 𝑘𝑥

𝑝−1 𝑡, 𝑥 𝑔 𝑡, 𝑥, 𝑢 + 𝑘𝑡
𝑝−1 𝑡, 𝑥 

       (11) 

Where subscripts denote partial derivatives, depending on the context we use a subscript such as  𝑖, to 

denote the  𝑖𝑡𝑕   component of a vector 

If   
𝑘𝑢
𝑖  𝑡, 𝑥, 𝑢 = 0, 𝑓𝑜𝑟 0 ≤ 𝑖 ≤ 𝑝 − 1

𝑘𝑢
𝑖  𝑡, 𝑥, 𝑢 ≠ 0, 𝑓𝑜𝑟 𝑖 = 𝑝                 

         (12) 

Then the state constraint  𝑘 𝑡, 𝑥 ≥ 0 𝑖𝑠 𝑜𝑓 𝑜𝑟𝑑𝑒𝑟 𝑝 

Generally, case of 𝑘 𝑡, 𝑥 , the corresponding order  𝑝, for each component 𝑘𝑖 𝑡, 𝑥  𝑜𝑓 𝑘 𝑡, 𝑥 , it is 

obtained from (11) and (12). 

If the state constraints will of order of  𝑝 = 1, and then it is easier to treat than the higher order case 
[10]

 with respect to the𝑖𝑡𝑕   , constraint  𝑘𝑖 𝑡, 𝑥 ≥ 0 , a sub interval  𝜏1 , 𝜏2 ⊂  0, 𝑇  𝑤𝑖𝑡𝑕 𝜏1 < 𝜏2, it is 

called an interior interval of a tractor if  𝑘𝑖 𝑥(𝑡), 𝑡 > 0, ∀ 𝑡 ∈  𝜏1 , 𝜏2  

An interval  𝜏1 , 𝜏2  𝑤𝑖𝑡𝑕 𝜏1 < 𝜏2, it is called a boundary interval if  𝑘𝑖 𝑥(𝑡), 𝑡 = 0 𝑓𝑜𝑟 𝑡 ∈  𝜏1 , 𝜏2  

An instant  𝜏1, it is called an entry time if there is an interior interval ending at 𝑡 = 𝜏1, boundary 

interval starting at 𝜏1, correspondingly 𝜏2, it is called an exist time if a boundary interval ends at 𝜏2 

and an interior  interval starts at 𝜏2 

If the trajectory  𝑥 just touches the boundary at time 𝜏, 𝑖. 𝑒. 𝑘 𝜏, 𝑥 𝜏𝑐  = 0, and if the trajectory 𝑥 it is 

in the interior just before and after 𝜏 𝑡𝑕𝑒𝑛 𝜏 , it is called a contact time. 

Taken together, entry, exist and contact times are called junction times. 

Assume that the following full rank conditions on any boundary interval   𝜏1 , 𝜏2  𝑖𝑠  

 
 
 
 
 
𝜕𝑘1

𝑝1

𝜕𝑢

⋮
𝜕𝑘

𝑠′

𝑝
𝑠′

𝜕𝑢  
 
 
 
 

 with full 

rank for all  𝑡 ∈  𝜏1 , 𝜏2 , 𝑤𝑕𝑒𝑟𝑒 𝑘𝑖
∗ 𝑡 = 0 𝑓𝑜𝑟 𝑖 = 1, 2, … , 𝑠′ ≤ 𝑠  𝑎𝑛𝑑 𝑘𝑖

∗ 𝑡 ≥ 0 𝑓𝑜𝑟 𝑖 = 𝑠′ +

1, , … , 𝑠 

That is the gradients of   𝑘𝑖
𝑝𝑠 𝑡, 𝑥  with respect to 𝑢 of the active constraints  𝑘𝑖 𝑥(𝑡), 𝑡 = 0 𝑓𝑜𝑟 𝑖 =

1, 2, … , 𝑠′  they must be linearly independent along the optimal trajectory 
[3]

 

2.4. Direct adjoint Approach 

In this approach, the Hamiltonian ℋ 𝑎𝑛𝑑 𝐿 the Lagrangian multipliers are defined as follows: 

ℋ 𝑡, 𝑥, 𝑢, 𝜆 = 𝑓 𝑡, 𝑥, 𝑢 + 𝜆𝑔 𝑡, 𝑥, 𝑢   
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𝐿 𝑡, 𝑥, 𝑢, 𝜆, 𝜇, 𝜐 = ℋ 𝑡, 𝑥, 𝑢, 𝜆 + 𝜇𝑕 𝑡, 𝑥, 𝑢 + 𝜐𝑘 𝑡, 𝑥  𝑤𝑕𝑒𝑟𝑒 𝑡𝑕𝑒 𝑣𝑒𝑐𝑡𝑜𝑟 𝜆 ∈ ℝ𝑛(𝑡) 𝑎𝑛𝑑 𝜐 ∈

ℝ𝑞(𝑡)  

They are multipliers. This method derives its name from the fact that the mixed 

constraints 𝑕 𝑡, 𝑥, 𝑢 ≥ 0 as well as the pure state constraints  𝑘 𝑡, 𝑥 ≥ 0 they are directly adjoined to 

the Hamiltonian in order to form the Lagrangian. 

Theorem – 2.5: 

Let   𝑥∗ .  , 𝑢∗ .   , it is an optimal pair for OCP over a fixed interval   0, 𝑇  such that  𝑢∗ .  , it is right 

continuous with left hand limits and the constraint qualification condition of equation  
𝜕𝑕

𝜕𝑢
, 𝑑𝑖𝑎𝑔 𝑕   

holds for every triple  𝑡, 𝑥∗, 𝑢∗  𝑎𝑛𝑑 𝑡 ∈  0, 𝑇  𝑤𝑖𝑡𝑕 𝑢 ∈ 𝑈 𝑡, 𝑥∗ 𝑡  . Assume that 𝑥∗ 𝑡 , it has only 

finitely many junction times where 𝜆 .  , they are continuous at junction time and then there exists a 

constant  𝜆0 𝑡 > 0 , a piece wise absolutely continuous co state trajectory  𝜆 .  , 

mapping   0, 𝑇  𝑖𝑛𝑡𝑜 ℝ𝑛 , piece wise continuous multiplier functions    𝜇 .  𝑎𝑛𝑑  𝜐 .   

mapping  0, 𝑇  𝑖𝑛𝑡𝑜 ℝ𝑠 𝑎𝑛𝑑 ℝ𝑞 repectively. A vector  𝜂 𝜏𝑖 ∈ ℝ
𝑞  𝑓𝑜𝑟 𝑒𝑎𝑐𝑕 𝑝𝑜𝑖𝑛𝑡 𝜏𝑖  of discontinuity 

of 𝜆 .  , and 𝛼 ∈ ℝ𝑙 , 𝛽 ∈ ℝ𝑙 ′  𝑎𝑛𝑑 𝛾 ∈ ℝ𝑞 , and such that 𝜆0 , 𝜆 𝑡 , 𝜇, 𝜐, 𝛼, 𝛽, 𝜂 𝜏1 ,… , 𝜂 𝜏𝑖  ≠ 0, ∀ 𝑡  

and the following conditions hold almost everywhere 
[10]

 

𝑢∗ 𝑡 = arg max𝑢∈𝑈 𝑡,𝑥 𝑡  ℋ 𝑡, 𝑥∗, 𝑢, 𝜆0, 𝜆 .     

𝐿𝑢
∗  𝑡 = ℋ𝑢

∗ 𝑡 + 𝜇𝑕𝑢 𝑡 = 0  

𝜆 = −𝐿𝑥
∗  𝑡   

𝜇 𝑡 ≥ 0 𝑎𝑛𝑑 𝜇𝑕∗ 𝑡, 𝑥, 𝑢 = 0  

𝜐 ≥ 0  𝑎𝑛𝑑 𝜐𝑘∗ 𝑡, 𝑥 = 0  

At the terminal time  𝑇, the following transversality conditions hold 

𝜆 𝑇− = 𝜆0𝑆𝑥
∗ 𝑇 + 𝛼𝑎𝑥 𝑇 + 𝛽𝑏𝑥 𝑇 + 𝛾𝑘𝑥

∗ 𝑇  𝑤𝑕𝑒𝑟𝑒 𝛼 ≥ 0, 𝛾 ≥ 0 𝑤𝑖𝑡𝑕 𝛼𝑎 𝑇 = 𝛾𝑘∗ 𝑇 = 0  

For any time 𝜏 in a boundary interval and for any contact time 𝜏, the co state trajectory 𝜆, it may have 

a discontinuity given by the following jump conditions 

𝜆 𝜏− = 𝜆 𝜏+ + 𝜂 𝜏 𝑘𝑥
∗ 𝜏 ; ℋ∗ 𝜏− = ℋ∗ 𝜏+ − 𝜂 𝜏 𝑘𝑥

∗ 𝜏  𝑤𝑖𝑡𝑕 𝜂 𝜏 ≥ 0 𝑎𝑛𝑑 𝜂 𝜏 𝑘𝑥
∗ 𝜏 = 0   

Where  𝜏+ 𝑎𝑛𝑑 𝜏− denote the left and right hand side limits respectively 

Proposition – 2.6: 

The adjoint function 𝜆, it is continuous at a junction time 𝜏 𝑖. 𝑒. 𝜂 𝜏 = 0, if either conditions (a) or (b) 

holds: 

a. The control 𝑢∗, it is continuous at 𝜏 𝑎𝑛𝑑  

𝜕𝑕∗ 𝜏 

𝑑𝑢
𝑑𝑖𝑎𝑔  𝑕∗ 𝜏  0

𝜕𝑘1 ∗ 𝜏 

𝑑𝑢
0 𝑑𝑖𝑎𝑔  𝑘∗ 𝜏  

  (14) 

It is full rank where 𝑘1  𝑡, 𝑥, 𝑢 as defined in equation (13) 

b. The entry or exist is non tangential that is 𝑘1 ∗ 𝜏− < 0  𝑜𝑟 𝑘1 ∗ 𝜏+ > 0, and then 𝜆 𝑡 , it is 

continuous at time  𝑡 = 𝜏 
[10]

  



  International Journal of Advanced Research in  ISSN: 2278-6252 

 Engineering and Applied Sciences  Impact Factor: 7.358 
 

Vol. 5 | No. 10 | October 2016 www.garph.co.uk IJAREAS | 9 
 

Definition – 2.7: 

The Hamiltonian is said to be regular if along a given  𝑥 𝑡 , 𝜆 𝑡 , 𝜂 𝑡  𝑎𝑛𝑑 ℋ 𝑥 𝑡 , 𝑢, 𝜆 𝑡 , 𝜂 𝑡  , it 

has a unique maximum in 𝑢, ∀ 𝑡 ∈  0, 𝑇  

Proposition – 2.8: 

If the Hamiltonian is regular, which in this context means that the maximization of ℋ with respect 

to  𝑢, it is unique and then  𝑢∗, it is continuous everywhere including the points on the boundary 
[9] 

2.9. The indirect adjoining approach with complementary slackness (First order constrains) 

The main idea behind this approach is “If the trajectory hits the boundary at 

time 𝜏1 , 𝑖. 𝑒. 𝑘 𝑥 𝜏1 , 𝜏1 = 0, and then for it to remain on the boundary up to time  𝜏2 requires 

𝑘1  𝑡, 𝑥∗ 𝑡 , 𝑢∗ 𝑡  = 0 𝑓𝑜𝑟 𝑡 ∈  𝜏1 , 𝜏2  𝑤𝑕𝑒𝑟𝑒 𝑘1 𝑡, 𝑥, 𝑢 , it may or may not depend explicitly on 

the control variables”. This asserts that the phase velocity of a point moving along the trajectory is 

tangential to the boundary at time  𝑡 . At the end point  𝜏2, we must have  𝑘1 ∗ 𝜏2
+ ≥ 0. Thus, one 

could formally impose the constraint  𝑘1  𝑡, 𝑥, 𝑢 ≥ 0  𝑤𝑕𝑒𝑛𝑒𝑣𝑒𝑟 𝑘 𝑡, 𝑥 = 0 in order to prevent the 

trajectory from violating the constraint 𝑘 𝑡, 𝑥 ≥ 0. Then the Hamiltonian and Lagrangian can be 

defined as follows: 

ℋ1 𝑡, 𝑥, 𝑢, 𝜆0 , 𝜆1 = 𝜆0𝑓 𝑡, 𝑥, 𝑢 + 𝜆1𝑔 𝑡, 𝑥, 𝑢   

𝐿1 𝑡, 𝑥, 𝑢, 𝜆0 , 𝜆1, 𝜇, 𝑣1 = ℋ1 𝑡, 𝑥, 𝑢, 𝜆0 , 𝜆1 + 𝜇𝑕 𝑡, 𝑥, 𝑢 + 𝑣1𝑘1 𝑡, 𝑥, 𝑢   

Because the derivative of 𝑘1 𝑡, 𝑥, 𝑢  𝑜𝑓 𝑘 𝑡, 𝑥  rather than 𝑘 𝑡, 𝑥  itself is adjoined to ℋ in forming 

the Lagrangian, this approach is known as the indirect adjoining approach.  

The control region is  𝑈1  𝑡, 𝑥 =  𝑢 ∈ ℝ| 𝑕 𝑡, 𝑥, 𝑢 ≥ 0, 𝑘1 𝑡, 𝑥, 𝑢 ≥ 0 𝑖𝑓 𝑘 𝑡, 𝑥 = 0  

The necessary conditions of optimality that are used as a procedure while applying the indirect 

adjoining approach are now stated as follows: 

Theorem – 2.10: 

Let   𝑥∗ .  , 𝑢∗ .   , it is an optimal pair for OCP such that  𝑥∗ .  , it has only finitely many junction 

times and the strong constraint qualification condition of equation (14) holds. Then there exists a 

constant 𝜆0 ≥ 0 a piece wise absolutely continuous co stat trajectory 𝜆1 .   𝑚𝑎𝑝𝑝𝑖𝑛𝑔  0, 𝑇  𝑖𝑛𝑡𝑜 ℝ𝑛 , 

piece wise continuous multiplier function  𝜇 .    𝑎𝑛𝑑 𝑣1 .   𝑚𝑎𝑝𝑝𝑖𝑛𝑔  0, 𝑇  𝑖𝑛𝑡𝑜 ℝ𝑠 𝑎𝑛𝑑 ℝ𝑞  

respectively, a vector 𝜂1 𝜏𝑖 ∈ ℝ
𝑞  ∀ 𝜏𝑖  of discontinuity of  𝜆1 .   𝑎𝑛𝑑 𝛼 ∈ ℝ𝑙 , 𝛽 ∈ ℝ𝑙 ′  𝑛𝑜𝑡 𝑎𝑙𝑙 𝑧𝑒𝑟𝑜, 

such that the following conditions hold almost everywhere 
[10]

 

𝑢∗ 𝑡 = arg max𝑢∈𝑈 𝑡,𝑥 𝑡  ℋ
1 𝑡, 𝑥∗, 𝑢, 𝜆0, 𝜆1 .     

𝜆 1 = −𝐿𝑥
1∗ 𝑡 ;  𝐿𝑢

1∗ 𝑡 = 0;  𝜇 𝑡 ≥ 0 𝑎𝑛𝑑 𝜇𝑕∗ 𝑡, 𝑥, 𝑢 = 0 , and also 

𝑣𝑖
1, it is non – increasing on boundary intervals of 𝑘𝑖 𝑡, 𝑥 , 𝑓𝑜𝑟 𝑖 = 1, 2, … , 𝑞   𝑤𝑖𝑡𝑕 

𝑣1 𝑡 ≥ 0 , 𝑣 1 ≤ 0 𝑎𝑛𝑑 𝑣1𝑘1∗ 𝑡, 𝑥, 𝑢 = 0 𝑎𝑛𝑑 𝑎𝑙𝑠𝑜 
𝑑ℋ∗1

𝑑𝑡
 𝑡 =

𝑑𝐿∗1

𝑑𝑡
 𝑡 = 𝐿𝑡

1∗ 𝑡   
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Whenever these derivatives exist, at the terminal time 𝑇  the transversality conditions 

𝜆 𝑇− = 𝜆0𝑆𝑥
∗ 𝑇 + 𝛼𝑎𝑥 𝑇 + 𝛽𝑏𝑥 𝑇 + 𝛾𝑘𝑥

∗ 𝑇  𝑤𝑕𝑒𝑟𝑒 𝛼 ≥ 0, 𝛾 ≥ 0 𝑤𝑖𝑡𝑕 𝛼𝑎 𝑇 = 𝛾𝑘∗ 𝑇 = 0 , 

holds 

At each entry or contact time, the co state trajectory 𝜆1, it may have a discontinuity of the form 

𝜆1 𝜏− = 𝜆1 𝜏+ + 𝜂1 𝜏 𝑘𝑥
∗ 𝜏 ; ℋ∗1 𝜏− = ℋ∗1 𝜏+ + 𝜂1 𝜏 𝑘𝑡

∗ 𝜏  𝑤𝑖𝑡𝑕 𝜂1 𝜏 ≥

0 𝑎𝑛𝑑 𝜂1 𝜏 𝑘𝑡
∗ 𝜏 = 0   

2.11. The indirect adjoining approach for higher order constraints 

In this situation consider constraints of higher order i.e.  𝑝 ≥ 2, this means if 𝑝 = 1 𝑎𝑛𝑑 𝑘1 𝑡, 𝑥, 𝑢 , it 

does not depend on the control value   𝑢 , and then differentiate  𝑘 𝑡, 𝑥  with respect to time   𝑡 as 

required until it contains a control variable  𝑢. Then such type of constraints are said to be indirect 

adjoint approach for higher order constraints. The Hamiltonian and Lagrangian of the indirect 

approach for the state constraint of order 𝑝 are now 

ℋ𝑝 𝑡, 𝑥∗, 𝑢, 𝜆0 , 𝜆𝑝 = 𝜆0𝑓 𝑡, 𝑥, 𝑢 + 𝜆𝑝𝑔 𝑡, 𝑥, 𝑢   

𝐿𝑝 𝑡, 𝑥∗, 𝑢, 𝜆0 , 𝜆𝑝 , 𝜇, 𝑣𝑝 = ℋ𝑝 𝑡, 𝑥∗, 𝑢, 𝜆0 , 𝜆𝑝 + 𝜇𝑕 𝑡, 𝑥, 𝑢 + 𝑣𝑝𝑘𝑝 𝑡, 𝑥, 𝑢  𝑤𝑖𝑡𝑕 𝑘𝑝  , it is defined in 

(13). Then the control region  𝑈𝑝 𝑡, 𝑥 , it is defined as follows 

𝑈𝑝 𝑡, 𝑥 =  𝑢 ∈ ℝ𝑛 | 𝑕 𝑡, 𝑥, 𝑢 ≥ 0, 𝑘𝑝 𝑡, 𝑥, 𝑢 ≥ 0 𝑖𝑓 𝑘 𝑡, 𝑥 = 0   

Theorem – 2.12: 

Let   𝑥∗ .  , 𝑢∗ .   , it is an optimal pair for OCP such that  𝑥∗ .  , it has only finitely many junction 

times and where constraint 𝑘 𝑡, 𝑥  of order  𝑝  let the constraint qualification condition of equation 

(11) holds. Then there exists a constant 𝜆0 ≥ 0  a piece wise absolutely continuous co stat 

trajectory  𝜆𝑝 .   𝑚𝑎𝑝𝑝𝑖𝑛𝑔  0, 𝑇  𝑖𝑛𝑡𝑜 ℝ𝑛 , piece wise continuous multiplier 

function 𝜇 .    𝑎𝑛𝑑 𝑣1 .   𝑚𝑎𝑝𝑝𝑖𝑛𝑔  0, 𝑇  𝑖𝑛𝑡𝑜 ℝ𝑠 𝑎𝑛𝑑 ℝ𝑞  respectively, a vector 𝜂1 𝜏𝑖 ∈ ℝ
𝑞  ∀ 𝜏𝑖  of 

discontinuity of   𝜆𝑝 .   𝑎𝑛𝑑 𝛼 ∈ ℝ𝑙 , 𝛽 ∈ ℝ𝑙 ′  𝑛𝑜𝑡 𝑎𝑙𝑙 𝑧𝑒𝑟𝑜 , such that the following conditions hold 

almost everywhere 
[10] 

𝑢∗ 𝑡 = arg max𝑢∈𝑈 𝑡,𝑥 𝑡  ℋ
1 𝑡, 𝑥∗, 𝑢, 𝜆0, 𝜆𝑝 .     

𝜆 𝑝 = −𝐿𝑥
𝑝∗ 𝑡 ;  𝐿𝑢

𝑝∗ 𝑡 = 0;  𝜇 𝑡 ≥ 0 𝑎𝑛𝑑 𝜇𝑕∗ 𝑡, 𝑥, 𝑢 = 0 , and also the multiplier function 

𝑣𝑝  , it is differentiable 𝑝 − 1times and  𝑣𝑝 𝑝−1, it is of bounded variation 

  −1  𝑣𝑝 𝑟 𝑡 ≥ 0 , 𝑓𝑜𝑟 𝑟 = 0, 1, … , 𝑝, 𝑎𝑛𝑑 𝑣𝑝𝑘𝑝∗ 𝑡, 𝑥, 𝑢 = 0 𝑎𝑛𝑑 𝑎𝑙𝑠𝑜 
𝑑ℋ∗𝑝

𝑑𝑡
 𝑡 =

𝑑𝐿∗𝑝

𝑑𝑡
 𝑡 =

𝐿𝑡
𝑝∗ 𝑡   

Whenever these derivatives exist, at the terminal time 𝑇  the transversality conditions with 𝜆1 replaced 

by 𝜆𝑝  

At each entry or contact time, the co state trajectory 𝜆𝑝 , it may have discontinuity of the form 

𝜆𝑝 𝜏− = 𝜆𝑝 𝜏+ +  𝜂𝑟 𝜏  𝑘𝑟−1 𝑥
∗  𝜏 

𝑝
𝑟=1        (15)  
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ℋ𝑝 𝜏− = ℋ𝑝 𝜏+ +  𝜂𝑟 𝜏  𝑘𝑟−1 𝑥
∗  𝜏 

𝑝
𝑟=1          (16) 

𝑤𝑖𝑡𝑕 𝜂𝑟 𝜏 ≥ 0 𝑎𝑛𝑑 𝜂𝑟 𝜏 𝑘𝑡
∗ 𝜏 = 0 𝑓𝑜𝑟 𝑟 = 1, 2, … , 𝑝       (17) 

Proof: 

By the condition of the maximum principle the necessary conditions for  𝑢∗  with the state 

trajectory  𝑥∗ to be optimal control for the problem is the same approach as first order state constraints 

(Indirect approach). Suppose that the constraint  𝑘 𝑡, 𝑥 ≥ 0  it is constraint of order   𝑝 and 

since 𝑘 𝑡, 𝑥 , it is derivable 𝑝 times until it contains a control variable  𝑢 . In the case of  𝑝 order 

constraints, we need to define 𝑘𝑝 𝑡, 𝑥, 𝑢 , as defined in (12). Then using 𝑝 order constraints, we can 

for Lagrangian function as follows: 

 

𝐿𝑝 𝑡, 𝑥∗, 𝑢, 𝜆0 , 𝜆𝑝 , 𝜇, 𝑣𝑝 = ℋ𝑝 𝑡, 𝑥∗, 𝑢, 𝜆0 , 𝜆𝑝 + 𝜇𝑕 𝑡, 𝑥, 𝑢 + 𝑣𝑝𝑘𝑝 𝑡, 𝑥, 𝑢  , where Hamiltonian is 

ℋ𝑝 𝑡, 𝑥∗, 𝑢, 𝜆0 , 𝜆𝑝 = 𝜆0𝑓 𝑡, 𝑥, 𝑢 + 𝜆𝑝𝑔 𝑡, 𝑥, 𝑢   

Since 𝑝, indicate order and assume that the function 𝑔 𝑎𝑛𝑑 𝑘 they are continuously differentiable with 

respect to all their argument up to order   𝑝 − 1  𝑎𝑛𝑑 𝑝 respectively and then the necessary condition 

of optimality as follows 

𝑢∗ 𝑡 = arg max𝑢∈𝑈 𝑡,𝑥 𝑡  ℋ
𝑝 𝑡, 𝑥∗, 𝑢, 𝜆0 , 𝜆𝑝 .     

𝜆 𝑝 = −𝐿𝑥
𝑝∗ 𝑡 ;  𝐿𝑢

𝑝∗ 𝑡 = 0;  𝜇 𝑡 ≥ 0 𝑎𝑛𝑑 𝜇𝑕∗ 𝑡, 𝑥, 𝑢 = 0  

If the switching function of order 𝑝, the jump condition at entry times, the co state trajectory 𝜆𝑝and 

Hamiltonian function may have a discontinuity of the form 

𝜆𝑝 𝜏− = 𝜆𝑝 𝜏+ +  𝜂𝑟 𝜏  𝑘𝑟−1 𝑥
∗  𝜏 

𝑝
𝑟=1        

   

ℋ𝑝 𝜏− = ℋ𝑝 𝜏+ +  𝜂𝑟 𝜏  𝑘𝑟−1 𝑥
∗  𝜏 

𝑝
𝑟=1          

𝑤𝑖𝑡𝑕 𝜂𝑟 𝜏 ≥ 0 𝑎𝑛𝑑 𝜂𝑟 𝜏 𝑘𝑡
∗ 𝜏 = 0 𝑓𝑜𝑟 𝑟 = 1, 2, … , 𝑝        

2.13. The indirect adjoining approach with continuous adjoint functions 
[11]

 

In this case the adjoint function  𝜆 , it is continuous. The Hamiltonian ℋ and the control region 𝑈 

respectively 

ℋ =  𝑡, 𝑥∗, 𝑢, 𝜆0 , 𝜆 , 𝜇, 𝑣  = 𝜆0𝑓 𝑡, 𝑥, 𝑢 + 𝜆 𝑔 𝑡, 𝑥, 𝑢 + 𝜇𝑕 𝑡, 𝑥, 𝑢 + 𝑣 𝑘1 𝑡, 𝑥, 𝑢   

𝑈  𝑡, 𝑥 =  𝑢 ∈ ℝ𝑛 | 𝑕 𝑡, 𝑥, 𝑢 ≥ 0, 𝑘1 𝑡, 𝑥, 𝑢 ≥ 0 𝑖𝑓 𝑘 𝑡, 𝑥 = 0  , and also 

 𝑈  𝑡, 𝑥 =   𝑢 ∈ ℝ𝑛 | 𝑕 𝑡, 𝑥, 𝑢 ≥ 0, 𝑘1 𝑡, 𝑥, 𝑢 ≥ 0 𝑖𝑓 𝑘 𝑡, 𝑥 = 0   

Theorem – 2.14: 

Let   𝑥∗ .  , 𝑢∗ .   , it is an optimal pair for OCP such that  𝑥∗ .  , it has only finitely, many junction 

times and where constraint 𝑘 𝑡, 𝑥  of order  𝑝 let the constraint qualification condition of equation 

(14) holds. Then there exists a constant 𝜆0 ≥ 0 continuous and a piece wise continuously 

differentiable adjoint function  𝜆  .  :  0, 𝑇  ⟶ ℝ𝑛  and multiplier function  𝜇 .  :   0, 𝑇  ⟶
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 ℝ𝑠 𝑎𝑛𝑑 𝑣  .  ∶    0, 𝑇  ⟶ ℝ𝑞  respectively, such that the following conditions are satisfied 

whenever 𝑢, it is continuous 

𝑢∗ 𝑡 = arg max𝑢∈𝑈 𝑡,𝑥 𝑡  ℋ  𝑡, 𝑥
∗, 𝑢, 𝜆0, 𝜆 , 𝜇, 𝑣    

𝜆  = −ℋ 𝑥 𝑡 ;  ℋ 𝑢 𝑡 = 0; 
𝑑ℋ 

𝑑𝑡
 𝑡 =

𝑑ℋ 

𝑑𝑡
 𝑡  , and also the multiplier functions 𝜇 .    𝑎𝑛𝑑 𝑣  .  , they 

are continuous on intervals of continuity of 𝑢∗ .  , furthermore 𝑣  .  , it is non – increasing on  0, 𝑇 , 

continuous whenever 𝑘𝑖
∗ .  , it is discontinuous that is when entry to or exit from the corresponding 

state constraint is non – tangential, and constant on intervals up on which 𝑘𝑖
∗ .  ≥ 0, at the terminal 

time 𝑇, the following transversality conditions hold  

𝜆  𝑡 = 𝜆0𝑆𝑥
∗ 𝑇 + 𝛼𝑎𝑥 𝑇 + 𝛽𝑏𝑥 𝑇  𝑤𝑖𝑡𝑕 𝛼 ≥ 0 𝑎𝑛𝑑 𝛼𝑎 𝑇 = 0   

Proof: 

Suppose  𝑢∗ , it is continuous and then Hamiltonian is regular along a given  𝑥 𝑡 , 𝜆 𝑡 , 𝜂 𝑡  and 

then ℋ 𝑡, 𝑥 𝑡 , 𝜆 𝑡 , 𝜂 𝑡   , it has a unique maximum in 𝑢, ∀ 𝑡 ∈  0, 𝑇 , including the points on the 

boundary by proposition – 2.6  

Therefore, the necessary conditions are hold since maximum principle is unique and using partial 

derivative we can obtain optimality conditions and the adjoint equations as follow 

𝑢∗ 𝑡 = arg max𝑢∈𝑈 𝑡,𝑥 𝑡  ℋ  𝑡, 𝑥
∗, 𝑢, 𝜆0, 𝜆 , 𝜇, 𝑣    

𝜆  = −ℋ 𝑥 𝑡 ;  ℋ 𝑢 𝑡 = 0; 
𝑑ℋ 

𝑑𝑡
 𝑡 =

𝑑ℋ 

𝑑𝑡
 𝑡   

Since the adjoint function is continuous and then at the terminal time 𝑇, the following transversality 

conditions hold as follow  

𝜆  𝑡 = 𝜆0𝑆𝑥
∗ 𝑇 + 𝛼𝑎𝑥 𝑇 + 𝛽𝑏𝑥 𝑇  𝑤𝑖𝑡𝑕 𝛼 ≥ 0 𝑎𝑛𝑑 𝛼𝑎 𝑇 = 0   

2.15: Existence Result 
[6]

 

We can review several different sets of optimality conditions for OCP. Since optimality conditions do 

not mean much in the absence of an optimal solution then we briefly provide some existence results 

for the problems. Our purpose in this paper is not to make a review of existence result. We choose to 

mention two characteristic 

 The first result uses strong assumption such as boundedness of all admissible state and control 

paths 

 The second result uses growth conditions on the sate and control variables 
[10]

 

2.16. The Growth condition 
[4]

 

If 𝑓 𝑎𝑛𝑑 𝑔 , satisfy the following conditions for every bounded subset  𝑋 𝑜𝑓 ℝ𝑛 , and then there exists 

a constant  𝑐  and summable functions  𝑑   such that, for almost everywhere  𝑡 , ∀ 𝑥, 𝑢 ∈

𝑑𝑜𝑚 𝑓 𝑡, 𝑥, 𝑢 with 𝑥 ∈ 𝑋, we have 

 𝑔𝑥 𝑡, 𝑥, 𝑢  ≤ 𝑐  𝑔 𝑡, 𝑥, 𝑢  + 𝑓 𝑡, 𝑥, 𝑢  + 𝑑 𝑡  𝑎𝑛𝑑 𝑓𝑜𝑟 𝑎𝑙𝑙 𝜉 𝑎𝑛𝑑 𝜓  

 𝜉  1 +  𝑔𝑢 𝑡, 𝑥, 𝑢   ≤ 𝑐  𝑔𝑢 𝑡, 𝑥, 𝑢  + 𝑓 𝑡, 𝑥, 𝑢  + 𝑑 𝑡   
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Define the state dependent control region: 𝑈 𝑡, 𝑥 =  𝑢 ∈ ℝ𝑛 |𝑕 𝑡, 𝑥, 𝑢 ≥ 0 ⊂ ℝ𝑛  and the set 

𝑁 𝑡, 𝑥 =  𝑓 𝑡, 𝑥, 𝑢 + 𝛾,
𝑔 𝑡,𝑥,𝑢 

𝛾
≤ 0, 𝑢 ∈ 𝑈 𝑡, 𝑥 ⊂ ℝ𝑛   

Lemma – 2.17 
[2]

 

Let 𝑈 𝑦 , it is an upper semi continuous set – valued mapping ℝ𝑚 ⟶ ℝ𝑛  with compact values. Then 

on any compact (and hence on any bounded) set of 𝑦, the values 𝑈 𝑦 , they are uniformly bounded 

i.e. and for any compact set  𝐾 ∈ ℝ𝑚 , there exists a constant 𝛿 such that the set 𝑈 𝑦 , it is contained 

in the ball 𝐵 0, 𝛿  𝑓𝑜𝑟 𝑎𝑛𝑦 𝑦 ∈ 𝐾 

Corollary – 2.18 
[2]

 

Suppose that the set 𝑈 𝑡, 𝑥 , it is an upper semi continuous set – valued mapping ℝ𝑚+1 ⟶ ℝ𝑛  with 

compact values. Then for any 𝑇 > 0 and any bounded set 𝑄 ⊂ ℝ𝑚  there is an 𝑅 = 𝑅 𝑇, 𝑄   such that 

the inclusion 𝑈 𝑡, 𝑥 ⊂ 𝐵 0, 𝛿  𝑕𝑜𝑙𝑑𝑠 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑡 ∈  0, 𝑇  𝑎𝑛𝑑 𝑎𝑛𝑦 𝑥 ∈ 𝑄  

Theorem – 2.19 

Consider the OCP where  𝑇 , it is free to vary in the interval   0, 𝑇 , and assume 

that 𝑓, 𝑔, 𝑕, 𝑘, 𝑆, 𝑎 𝑎𝑛𝑑 𝑏 they are continuous in all their arguments at all points  𝑡, 𝑥, 𝑢 ∈  0, 𝑇 ×

ℝ𝑚 × ℝ𝑛  . Suppose that there exists an admissible solution pair and that the following conditions 

hold 

a. 𝑁 𝑡, 𝑥 , it is convex for all  𝑡, 𝑥 ∈  0, 𝑇 × ℝ𝑚 , and suppose further that 

b. There exists 𝛿 > 0 such that  𝑢 < 𝛿1, for all admissible pair  𝑥 𝑡 , 𝑢 𝑡   𝑎𝑛𝑑 𝑡, and  

c. There exists 𝛿1 > 0 such that  𝑢 < 𝛿1 , ∀ 𝑢 ∈ 𝑈 𝑡, 𝑥  𝑤𝑖𝑡𝑕  𝑥 𝑡  < 𝛿, and also 

d. There exists an optimal triple  𝑇∗, 𝑥∗, 𝑢∗  𝑤𝑖𝑡𝑕 𝑢∗ .  , it is measurable 

Proof: 

Let  𝑓1 𝑡, 𝑥, 𝑢 + 𝛾1 , 𝑔1 𝑡, 𝑥, 𝑢  𝑎𝑛𝑑 𝑓2 𝑡, 𝑥, 𝑢 + 𝛾2 , 𝑔2 𝑡, 𝑥, 𝑢  ∈ 𝑁 𝑡, 𝑥 , and then for all any  0 ≤

𝑎 ≤ 1 

𝑎 𝑓1 𝑡, 𝑥, 𝑢 + 𝛾1 , 𝑔1 𝑡, 𝑥, 𝑢  +  1 − 𝑎  𝑓2 𝑡, 𝑥, 𝑢 + 𝛾2 , 𝑔2 𝑡, 𝑥, 𝑢  =

𝑎𝑓1 𝑡, 𝑥, 𝑢 + 𝑎𝛾1 , 𝑎𝑔1 𝑡, 𝑥, 𝑢 + 𝑓2 𝑡, 𝑥, 𝑢 + 𝛾2 , 𝑔2 𝑡, 𝑥, 𝑢 − 𝑎𝑓2 𝑡, 𝑥, 𝑢 − 𝑎𝛾2 − 𝑎𝑔2 𝑡, 𝑥, 𝑢   

Collect like terms together we get 

 𝑎 𝑓1 𝑡, 𝑥, 𝑢 + 𝛾1 +  1 − 𝑎  𝑓2 𝑡, 𝑥, 𝑢 + 𝛾2  , 𝑎𝑔1 𝑡, 𝑥, 𝑢 +  1 − 𝑎 𝑔2 𝑡, 𝑥, 𝑢 =

 𝑎 𝑓1 𝑡, 𝑥, 𝑢 − 𝑓2 𝑡, 𝑥, 𝑢   + 𝑎 𝛾1 − 𝛾2 + 𝛾2 , 𝑎𝑔1 𝑡, 𝑥, 𝑢 +  1 − 𝑎 𝑔2 𝑡, 𝑥, 𝑢    

⟹𝑁 𝑥, 𝑡 , it is convex and also by the lemma 2.17 there exists 𝛿 > 0 such that  𝑥 𝑡  < 𝛿, for all 

admissible pair   𝑥 𝑡 , 𝑢 𝑡   𝑎𝑛𝑑 𝑡 , and also there exists 𝛿1 > 0  such that   𝑢 < 𝛿1 , ∀ 𝑢 ∈

𝑈 𝑡, 𝑥  𝑤𝑖𝑡𝑕  𝑥 𝑡  < 𝛿 

⟹The triple  𝑇∗, 𝑥∗, 𝑢∗ ∈ the compact set  0, 𝑇 × 𝐵 0, 𝛿 × 𝐵 0, 𝛿1  

⟹The set of solutions 𝑥 𝑡  of OCP is uniformly bounded and continuous and the set of controls 𝑢 𝑡 , 

it is uniformly bounded and hence the optimal triple  𝑇∗, 𝑥∗, 𝑢∗  𝑤𝑖𝑡𝑕 𝑢∗ .  , it is measurable 
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2.20. Sufficient conditions and uniqueness 
[1] 

Theorem – 2.21  

Let   𝑥∗ .  , 𝑢∗ .   , it is a feasible pair for the OCP with a fixed horizon time 𝑇 < ∞. Then there exists 

a piece wise continuously differentiable function 𝜆:  0, 𝑇 ⟶ ℝ𝑛  such that for every other feasible 

pair 𝑥 .  , 𝑢 .   , the following conditions hold  

a. The maximum Hamiltonian 

ℋ 𝑡, 𝑥∗ 𝑡 , 𝑢∗ 𝑡 , 𝜆 𝑡  −ℋ 𝑡, 𝑥 𝑡 , 𝑢 𝑡 , 𝜆 𝑡  ≥ 𝜆  𝑡  𝑥 𝑡 − 𝑥∗ 𝑡  , ∀ 𝑡 ∈  0, 𝑇   

b. The jump conditions 

𝜆 𝜏− − 𝜆 𝜏+  𝑥 𝜏 − 𝑥∗ 𝜏  ≥ 0,  ∀ 𝑡 ∈  0, 𝑇  𝑤𝑕𝑒𝑟𝑒 𝜆, it is discontinuous and  

c. The transversality condition 

𝜆 𝑡  𝑥 𝑇 − 𝑥∗ 𝑇  ≥ 𝑆 𝑥∗ 𝑇 , 𝑇 , and then  𝑥∗, 𝑢∗ , it is optimal 

Note: 

This sufficient conditions and uniqueness do not use any concavity or convexity assumption 
[4], [7] 

Theorem – 2.22 (Arrow type) 
[5]

 

Let   𝑥∗ .  , 𝑢∗ .   , it is a feasible pair for the OCP with a fixed horizon time 𝑇 < ∞. Then there exists 

a piece wise continuously differentiable function  𝜆:  0, 𝑇 ⟶ ℝ𝑛 , piece wise continuous 

functions  𝜇:  0, 𝑇 ⟶ ℝ𝑠 𝑎𝑛𝑑 𝜂:  0, 𝑇 ⟶ ℝ𝑞 such that all necessary conditions hold and assume 

further that there exists 𝛼 ∈ ℝ𝑙 , 𝛽 ∈ ℝ𝑙 ′ such that the transversality conditions hold and assume that at 

all points 𝜏𝑖  of discontinuity of 𝜆, and then there exists a 𝜂 𝜏𝑖 ∈ ℝ𝑛  such that jump conditions hold. 

If the maximized Hamiltonian  ℋ0 𝑡, 𝑥, 𝑢, 𝜆 = max𝑢∈𝑈 𝑡,𝑥 ℋ 𝑡, 𝑥, 𝑢, 𝜆 , it is concave 

in  𝑥, ∀ 𝑡, 𝜆 𝑡   𝑎𝑛𝑑 𝑆 𝑥, 𝑇  it is concave in  𝑥 𝑎𝑛𝑑 𝑏 𝑡, 𝑥 , it is linear in  𝑥 𝑡𝑕𝑒𝑛  𝑥∗, 𝑢∗  it is an 

optimal pair 
[10]

 

Theorem – 2.23 

A nonnegative linear combination of concave functions is also a concave function. That is, if 𝑓 𝑖 : 𝑥 ⟶

 ℝ,  for 𝑖 = 1, 2,… ,𝑚, they are concave functions on a convex subset 𝑥 ⊂ ℝ𝑛 , then 

𝑓 𝑥 =  𝛼𝑖𝑓 𝑖 𝑥 𝑚
𝑖=1 , 𝑤𝑕𝑒𝑟𝑒 𝛼𝑖 ∈ ℝ+, it is also a concave function on 𝑥 ⊂ ℝ𝑛  

Proof: 
This theorem implies for theorem 2.22 
 First recall the definition of the Hamiltonian, namely 
 
ℋ 𝑡, 𝑥, 𝑢, 𝜆 = 𝑓 𝑡, 𝑥, 𝑢 + 𝜆𝑔 𝑡, 𝑥, 𝑢 =  𝑓 𝑡, 𝑥, 𝑢 + 𝜇 𝑡  −𝑔 𝑡, 𝑥, 𝑢    

Since  𝑔(𝑡) , it is convex in    𝑥∗ 𝑡 , 𝑢∗ 𝑡  , ∀ 𝑡 ∈  0, 𝑇  𝑡𝑕𝑒𝑛 − 𝑔(𝑡) , it is convex 

in   𝑥∗ 𝑡 , 𝑢∗ 𝑡  ∀ 𝑡 ∈  0, 𝑇  by definition, moreover, because 𝜇 𝑡 ≥ 0, ∀ 𝑡 ∈  0, 𝑇  

⟹  ℋ .  , it is concave in 𝑥∗ 𝑡 , 𝑢∗ 𝑡  , ∀ 𝑡 ∈  0, 𝑇 , by the theorem 2.23 
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Since ℋ .  , it is a nonnegative linear combination of concave functions, thus, in either 

case, ℋ .   it is concave in  𝑥∗ 𝑡 , 𝑢∗ 𝑡  , ∀ 𝑡 ∈  0, 𝑇  

Finally, if 𝑔(. ), it is linear in  𝑥∗ 𝑡 , 𝑢∗ 𝑡  , ∀ 𝑡 ∈  0, 𝑇  𝑡𝑕𝑒𝑛 𝜆(𝑡), it may be any sign and ℋ .   it 

is concave in  𝑥∗ 𝑡 , 𝑢∗ 𝑡  , ∀ 𝑡 ∈  0, 𝑇  

If 𝑓(. ), it is concave in  𝑥∗ 𝑡 , 𝑢∗ 𝑡  , ∀ 𝑡 ∈  0, 𝑇 , this should be clear since if 𝑔(. ), it is linear 

in  𝑥∗ 𝑡 , 𝑢∗ 𝑡  , ∀ 𝑡 ∈  0, 𝑇 , and then it is both concave and convex in  𝑥∗ 𝑡 , 𝑢∗ 𝑡  , ∀ 𝑡 ∈  0, 𝑇  

⟹  𝜆(𝑡)𝑔(. ), it is both concave and convex in  𝑥∗ 𝑡 , 𝑢∗ 𝑡  , ∀ 𝑡 ∈  0, 𝑇  regardless of the sign 

in 𝜆(𝑡) 

⟹  𝑔(. ), it is linear in  𝑥∗ 𝑡 , 𝑢∗ 𝑡  , ∀ 𝑡 ∈  0, 𝑇 , and 𝑓(. ), it is concave in  𝑥∗ 𝑡 , 𝑢∗ 𝑡  , ∀ 𝑡 ∈

 0, 𝑇 , and then ℋ .  , it is concave in  𝑥∗ 𝑡 , 𝑢∗ 𝑡  , ∀ 𝑡 ∈  0, 𝑇  

Since it is a nonnegative linear combination of concave functions, in this instance we may also 

conclude that a solution of the necessary conditions of OCP is a solution to the OCP by theorem – 

2.22, since ℋ0, it is concave in  𝑥∗ 𝑡 , 𝑢∗ 𝑡  , ∀ 𝑡 ∈  0, 𝑇  

Corollary – 2.24  

If the assumption of theorem – 2.21 are satisfied and if theorem 2.22 holds with strict inequality 

for 𝑥 𝑡 ≠ 𝑥∗ 𝑡 , and then the optimal state trajectory 𝑥∗ 𝑡 , it is uniquely determined [9] 

Corollary – 2.25 

If the assumption of theorem – 2.22 is satisfied and if ℋ0(. ) holds and it is strictly concave in 𝑥 , 

and then the optimal state trajectory𝑥∗ 𝑡 , it is unique 

Note: 
Corollary 2.24 and 2.25 may not be true the uniqueness of the optimal control 𝑢∗, in the case 
of 𝑇 = ∞, and then the theorem – 2.23, it must be modified as follows [12] 

 
Theorem – 2.26 

If 𝑇 = ∞, and then the theorems 2.21 and 2.22 remain valid if the transversality condition 

𝜆 𝑇− = 𝑆𝑥
∗ 𝑇 + 𝛼𝑎𝑥 𝑇 + 𝛽𝑏𝑥 𝑇 + 𝛾𝑘𝑥

∗ 𝑇  𝑤𝑕𝑒𝑟𝑒 𝛼 ≥ 0, 𝛾 ≥ 0 𝑎𝑛𝑑 𝛼𝑎 𝑇 = 𝛾𝑘∗ 𝑇 = 0 , and 

𝜆 𝑇  𝑥 𝑇 − 𝑥∗ 𝑇  ≥ 𝑆 𝑥 𝑇 , 𝑇 − 𝑆 𝑥∗ 𝑇 , 𝑇  , they are replaced by the following limiting 

transversality condition 

lim
𝑡⟶∞

 𝜆 𝑇  𝑥 𝑇 − 𝑥∗ 𝑇  ≥ 0, for every other feasible state trajectory 𝑥 .   

Proof: 
Let  𝑥∗ 𝑡 , 𝑢∗ 𝑡  , it is any admissible pair, by hypothesis 𝐿 .  ∈ 𝐶(1) it is a concave function 

of  𝑥, 𝑢  ∀ 𝑡 ∈  0,∞  
 

⟹ 𝐿 𝑡, 𝑥∗, 𝑢∗, 𝜆, 𝜇 = 𝐿 𝑡, 𝑥, 𝑢, 𝜆, 𝜇 + 𝐿𝑥 𝑡, 𝑥, 𝑢, 𝜆, 𝜇  𝑥∗ − 𝑥 + 𝐿𝑢 𝑡, 𝑥, 𝑢, 𝜆, 𝜇  𝑢∗ − 𝑢 , ∀ 𝑡

∈  0,∞  
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Using the fact that 𝐿𝑢 𝑡, 𝑥, 𝑢, 𝜆, 𝜇 = 0 , and then integrating both sides of the resulting reduced 

inequality over the interval 0,∞ , and again using the definition of 𝐿 .   𝑎𝑛𝑑 𝐹 .  , yields 

𝐹 𝑥∗ .  , 𝑢∗ .   ≥

 
 
 

 
 

𝐹 𝑥 .  , 𝑢 .   +

 𝜆
∞

0
 𝑔 𝑡, 𝑥, 𝑢 − 𝑔 𝑡, 𝑥∗, 𝑢∗  𝑑𝑡 +

 𝜇
∞

0
 𝑕 𝑡, 𝑥, 𝑢 − 𝑕 𝑡, 𝑥∗, 𝑢∗  𝑑𝑡 +

 𝐿𝑥 𝑡, 𝑥, 𝑢, 𝜆, 𝜇  𝑥∗ − 𝑥 
∞

0
𝑑𝑡

      (18) 

By admissibility 

𝑥  𝑡 = 𝑔 𝑡, 𝑥, 𝑢  𝑎𝑛𝑑 𝑥 ∗ 𝑡 = 𝑔 𝑡, 𝑥∗, 𝑢∗ , ∀ 𝑡 ∈  0,∞  𝑤𝑕𝑖𝑙𝑒 𝜆 = −𝐿𝑥 𝑡, 𝑥, 𝑢, 𝜆, 𝜇 , ∀ 𝑡 ∈  0,∞   

Substituting these above three results in (18) we get 

𝐹 𝑥∗ .  , 𝑢∗ .   ≥

 
 
 

 
 

𝐹 𝑥 .  , 𝑢 .   +

 𝜆
∞

0
 𝑥  𝑡 − 𝑥 ∗ 𝑡  𝑑𝑡 +

 𝜇
∞

0
 𝑕 𝑡, 𝑥, 𝑢 − 𝑕 𝑡, 𝑥∗, 𝑢∗  𝑑𝑡 +

 𝜆  𝑥∗ − 𝑥 
∞

0
𝑑𝑡

      (19) 

Since 𝜇 𝑡 𝑕 𝑡, 𝑥, 𝑢 = 0 𝑓𝑜𝑟 𝜇 𝑡 ≥ 0;  𝜇 𝑡 𝑕 𝑡, 𝑥∗, 𝑢∗ = 0 𝑓𝑜𝑟 𝜇 𝑡 ≥ 0, and then we have 

 𝜇
∞

0
 𝑕 𝑡, 𝑥, 𝑢 − 𝑕 𝑡, 𝑥∗, 𝑢∗  𝑑𝑡 ≤ 0        (20) 

Using (20) in (19) we will reduce the form of (19) as follows 

𝐹 𝑥∗ .  , 𝑢∗ .   ≥ 𝐹 𝑥 .  , 𝑢 .   +  𝜆   𝑥  𝑡 − 𝑥 ∗ 𝑡  + 𝜆  𝑥 𝑡 − 𝑥∗ 𝑡   
∞

0
𝑑𝑡  

⟹ 𝐹 𝑥∗ .  , 𝑢∗ .   ≥ 𝐹 𝑥 .  , 𝑢 .   +  
𝑑

𝑑𝑡
 𝜆 𝑡  𝑥 𝑡 − 𝑥∗ 𝑡   

∞

0
𝑑𝑡  

⟹ 𝐹 𝑥∗ .  , 𝑢∗ .   ≥ 𝐹 𝑥 .  , 𝑢 .   + lim
𝑡⟶∞

  𝜆 𝑡  𝑥 𝑡 − 𝑥∗ 𝑡   −  𝜆 0  𝑥 0 − 𝑥∗ 0     

Since by admissibility we have 𝑥 0 = 𝑥0  𝑎𝑛𝑑 𝑥∗ 0 = 𝑥0 ⟹  𝑥 0 − 𝑥∗ 0  = 0 

⟹ 𝐹 𝑥∗ .  , 𝑢∗ .   ≥ 𝐹 𝑥 .  , 𝑢 .   + lim
𝑡⟶∞

  𝜆 𝑡  𝑥 𝑡 − 𝑥∗ 𝑡    , and also for every admissible 

control path 𝑢 𝑡 , lim
𝑡⟶∞

  𝜆 𝑡  𝑥 𝑡 − 𝑥∗ 𝑡   ≥ 0  𝑤𝑕𝑒𝑟𝑒 𝑥 𝑡 , it is the time path of the state 

variable corresponding to 𝑢 𝑡 , and then it follows that 

𝐹 𝑥∗ .  , 𝑢∗ .   ≥ 𝐹 𝑥 .  , 𝑢 .   , for all admissible functions  𝑥∗ .  , 𝑢∗ .    

If 𝐿 .  , it is a strictly concave function of  𝑥∗ .  , 𝑢∗ .    ∀ 𝑡 ∈  0,∞ , and then the inequality 

becomes strict if either 𝑥∗ 𝑡 ≠ 𝑥 𝑡  𝑜𝑟 𝑢∗ 𝑡 ≠ 𝑢 𝑡  𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑡 ∈   0,∞   

⟹ 𝐹 𝑥∗ .  , 𝑢∗ .   ≥  𝐹 𝑥 .  , 𝑢 .     

This shows that any admissible pair of functions  𝑥∗ .  , 𝑢∗ .   , which are not identically equal 

to 𝑥 .  , 𝑢 .   , they are sub optimal [5] 



  International Journal of Advanced Research in  ISSN: 2278-6252 

 Engineering and Applied Sciences  Impact Factor: 7.358 
 

Vol. 5 | No. 10 | October 2016 www.garph.co.uk IJAREAS | 17 
 

2.28. Solving problem by using theorems 2.5, 2.10 and 2.12 

Example: 

Consider  max −𝑥𝑑𝑡
3

0
  

Subject to  𝑥 = 𝑢, 𝑥 ≥ 0    
   𝑢 + 1 ≥; 1 − 𝑢 ≥ 0  
With   𝑥 0 = 1 𝑎𝑛𝑑 𝑥 3 = 1  
Solution: 
The Hamiltonian is ℋ = −𝑥 + 𝜆𝑢 
⟹The optimal control to be  𝑢∗ = 𝑏𝑎𝑛𝑔  −1, 1; 𝜆  𝑤𝑕𝑒𝑛 𝑥 ≥ 0 

And which optimal control on the state constraint bounder is  𝑢∗ = 𝑏𝑎𝑛𝑔  1, 1; 𝜆  𝑤𝑕𝑒𝑛 𝑥 = 0 

The bounder conditions 𝑥 0 = 1 𝑎𝑛𝑑 𝑥 3 = 1 

⟹ 𝑢∗ 𝑡 =  

−1 𝑓𝑜𝑟 𝑡 ∈   0, 1  

0 𝑓𝑜𝑟 𝑡 ∈  1, 2 

1 𝑓𝑜𝑟 𝑡 ∈   2, 3  

   𝑎𝑛𝑑  𝑥∗ 𝑡 =  

1 − 𝑡 𝑓𝑜𝑟 𝑡 ∈   0, 1  

0 𝑓𝑜𝑟 𝑡 ∈  1, 2 

𝑡 − 2 𝑓𝑜𝑟 𝑡 ∈   2, 3  

   

First we apply the direct adjoint approach and the Lagrangian form as 

 

𝐿 = ℋ + 𝜇1 𝑢 + 1 + 𝜇2 1 − 𝑢 + 𝑣𝑥  

The necessary conditions of theorem 2.5 are  𝐿𝑢 = 𝜆 + 𝜇1 − 𝜇2 = 0  𝑎𝑛𝑑 𝜆 = −𝐿𝑥 = 1 − 𝑣 , but 
𝜇1 ≥ 0 𝑎𝑛𝑑 𝜇1 𝑢 + 1 = 0; 𝜇2 ≥ 0 𝑎𝑛𝑑 𝜇2 1 − 𝑢 ; 𝑣 ≥ 0 , 𝑣𝑥 = 0 𝑎𝑛𝑑 𝑣 ≤ 0 𝑎𝑛𝑑 𝑎𝑙𝑠𝑜 𝜆 3 =
𝛽,𝑤𝑕𝑒𝑟𝑒 𝛽 ∈ ℝ  

The enters of the boundary of 𝑥 = 0, in a non – tangential way at time 𝜏1 = 0 

Since  𝑘1 1− ≤ 0 𝑎𝑛𝑑 𝑎𝑙𝑠𝑜 𝑎𝑡 𝑡𝑖𝑚𝑒 𝜏2 = 2, it leaves this bounder non tangential  

Since  𝑘1 2+ ≥ 0 ⟹By the proposition 2.8 𝜆, it is continuous at time 𝑡 = 1 𝑎𝑛𝑑 𝑡 = 2 as well as 

in   0, 1  𝑎𝑛𝑑    2, 3   where the stat constraint is not active. 

Consider the boundary interval  1, 2 , here  𝑢 = 0 ⟹ 𝜇1 = 𝜇2 = 0, and then form 

𝐿𝑢 = 𝜆 + 𝜇1 − 𝜇2 = 0  𝑎𝑛𝑑 𝜆 = 0  

Thus 𝜆, it is also continuous in  1, 2 , furthermore, since 𝜆 = 0 and then 𝜆 = −𝐿𝑥 = 1 − 𝑣, 
becomes 
−𝐿𝑥 = 1 − 𝑣 = 0 ⟹ 𝑣 = 1  
⟹All multipliers are uniquely determined in  1, 2 . 

In   0, 1   , we have 𝑥 > 0 𝑎𝑛𝑑 𝑣 = 0 𝑡𝑕𝑒𝑛 𝜆 = 𝑡 − 1 𝑏𝑒𝑐𝑎𝑢𝑠𝑒 𝑜𝑓 𝜆 = 1 𝑎𝑛𝑑 𝜆 1 = 0 

Similarly in   2, 3  , we have 𝑥 > 0 𝑎𝑛𝑑 𝑣 = 0 𝑡𝑕𝑒𝑛 𝜆 = 𝑡 − 2 𝑏𝑒𝑐𝑎𝑢𝑠𝑒 𝑜𝑓 𝜆 = 1 𝑎𝑛𝑑 𝜆 2 = 0 
Determine   𝜇1𝑎𝑛𝑑 𝜇2 , 𝑓𝑟𝑜𝑚 𝐿𝑢 = 𝜆 + 𝜇1 − 𝜇2 = 0 , and  𝜇1 ≥ 0 𝑎𝑛𝑑 𝜇1 𝑢 + 1 = 0; 𝜇2 ≥
0 𝑎𝑛𝑑 𝜇2 1 − 𝑢  
In   0, 1   , we have 𝜆 = 𝑡 − 1 𝑎𝑛𝑑 𝑢 = −1 𝑡𝑕𝑒𝑛 𝜇2 = 0 𝑎𝑛𝑑 𝜇1 = 1 − 𝑡 
In   2, 3  , we have 𝜆 = 𝑡 − 2 𝑎𝑛𝑑 𝑢 = 1 𝑡𝑕𝑒𝑛 𝜇1 = 0 𝑎𝑛𝑑 𝜇2 = 𝑡 − 2 
 
In the indirect adjoining approach the Hamiltonian  ℋ1 and Lagrangian  𝐿1 they are 
ℋ1 = −𝑥 + 𝜆𝑢 ;  𝐿1 = ℋ1 + 𝜇1 𝑢 + 1 + 𝜇2 1 − 𝑢 + 𝑣1𝑢  
The necessary conditions of theorem 2.10 are 

𝐿𝑢
1 = 𝜆 + 𝜇1 − 𝜇2 + 𝑣1 = 0  𝑎𝑛𝑑 𝜆 = −𝐿𝑥 = 1 𝑤𝑕𝑒𝑟𝑒 𝜇1 , 𝜇2 𝑎𝑛𝑑 𝑣1 , satisfy the complementary 

slackness conditions they are 

𝜇1 ≥ 0 𝑎𝑛𝑑 𝜇1 𝑢 + 1 = 0; 𝜇2 ≥ 0 𝑎𝑛𝑑 𝜇2 1 − 𝑢 = 0; 𝑣1 ≥ 0 , 𝑣1𝑥 = 0 𝑎𝑛𝑑 𝑣 1 ≤ 0  
Since 𝑥∗ 𝑡  enters the boundary zero at 𝑡 = 1 there are no jumps in interval    1, 2  , and the solutions 

for 𝜆1 𝑡  
It is  𝜆1 𝑡 = 𝑡 − 2 𝑓𝑜𝑟 𝑡 ∈   1, 2   
⟹ℋ1 1+ = −𝑥∗ 1+ + 𝜆1 1+ 𝑢∗ 1+ = 0 𝑎𝑛𝑑 𝑎𝑙𝑠𝑜 ℋ1 1− = −𝑥∗ 1− + 𝜆1 1− 𝑢∗ 1− =
−𝜆1 1−  
By the equations  ℋ1 1+  𝑎𝑛𝑑 ℋ1 1− , we get  𝜆1 1− = 0 
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Then the value of the jump condition is  𝜂1 1 = 𝜆1 1− − 𝜆1 1+ = 1 ≥ 0 

In time interval   0, 1 , 𝜇2 = 0 𝑠𝑖𝑛𝑐𝑒 𝑢∗ = −1 𝑎𝑛𝑑 𝑣1 = 0 𝑏𝑒𝑐𝑎𝑢𝑠𝑒 𝑥 > 0 𝑓𝑜𝑟 𝑡 ∈   0, 1   

⟹
𝜕𝐿

𝜕𝑥
= 𝜆 + 𝜇1 − 𝜇2 + 𝑣 = 0 𝑡𝑕𝑒𝑛 𝜆1 + 𝜇1 = 0 𝑠𝑖𝑛𝑐𝑒 𝜇2 = 0 𝑎𝑛𝑑 𝑣 = 0 𝑓𝑜𝑟 𝑡 ∈   0, 1    

⟹ 𝜇1 𝑡 = −𝜆1 𝑡 = 2 − 𝑡 𝑓𝑜𝑟 𝑡 ∈   0, 1   𝑤𝑖𝑡𝑕 𝑢 = −1   

At 𝑡 = 1, we have  𝑥 1 = 0 ⟹optimal control  𝑢∗ 1 = 0 

Assume that continue to use the control   𝑢∗ 𝑡 = 0 , in the interval   1, 2  𝑡𝑕𝑒𝑛 𝑥 𝑡 = 0, 𝑓𝑜𝑟 𝑡 ∈
 1, 2   
Since  𝜆1 𝑡 < −0 𝑓𝑜𝑟 𝑓𝑜𝑟 𝑡 ∈  1, 2  𝑡𝑕𝑒𝑛   𝑢∗ 1 = 0, on the same interval and then  

𝜇1 = 𝜇2 = 0𝑓𝑜𝑟 𝑡 ∈  1, 2 , but we can obtain  𝑣1 𝑡 = −𝜆1 𝑡 0𝑓𝑜𝑟 𝑡 ∈  1, 2   
 ⟹The adjoint function 𝜆, it is continuous everywhere,   𝑣 it is constant in   0, 1  𝑎𝑛𝑑   2, 3    where the 

state constraint is not active and  𝑣 , it is continuous at  𝑡 = 1, 2 𝑤𝑕𝑒𝑟𝑒 𝑘1 𝑡, 𝑥, 𝑢 = 𝑥 = 𝑢 , it is 

discontinuous. The adjoint function 𝜆, it is continuous, since the entry to and the exit from the state 

constraint is non – tangential 

Hence complete the result 

 

Conclusion: 

The proof of direct, indirect (First and higher order) adjoint approach with complementary slackness, 

any admissible pair of functions  𝑥∗ .  , 𝑢∗ .   , which are not identically equal to 𝑥 .  , 𝑢 .   , they 

are sub optimal, ℋ0, it is concave in  𝑥∗ 𝑡 , 𝑢∗ 𝑡  , ∀ 𝑡 ∈  0, 𝑇 , ℋ(. ), it is a concave function of 

 𝑥∗ 𝑡 , 𝑢∗ 𝑡  , ∀ 𝑡 ∈  0, 𝑇 ,  𝑥∗ 𝑡 , 𝑢∗ 𝑡  , it is an optimal pair and also 𝑥 𝑡 of OCP is uniformly 

continuous and bounded, 𝑢 𝑡 , it is uniformly bounded. For the further research we can solve 

OCP in penalty method, non linear programming method and dynamic programming method 
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