ON THE SUMMABILITY OF JACOBI SERIES BY $\left(N, p_{n}, q_{n}\right)_{\text {METHOD }}$

Dr. Sanjeev Kumar Saxena-Associate Professor N.M.S.N. Das (P.G.) College, Budaun-243601

[1.1] DEFINITIONS AND NOTATIONS:

The Jacobi polynomials $P_{n}^{(\alpha, \beta)}(x), \alpha>-1, \beta>-1$ are defined by

$$
2^{\alpha+\beta}\left(1-2 x t+t^{2}\right)^{-1 / 2}\left[\left(1-t+\left(1-2 x t+t^{2}\right)^{1 / 2}\right]^{-\alpha} \times \times\left[\left(1+t+\left(1-2 x t+t^{2}\right)^{1 / 2}\right]^{-\beta}\right.\right.
$$

$$
=\sum_{n=0}^{\infty} p_{n}^{(\alpha \beta \beta)}(x) t^{n}
$$

Let $f(x)$ be a function defined on the interval $-1 \leqslant x \leqslant 1$ such that the integral $\int_{-1}^{1}(1-x)^{\alpha}(1+x)^{\beta} f(x) d x$
exists in the sense of Lebesgue. The Fourier-Jacobi series corresponding to the function $f(x)$ is given by
$f(x) \sim \sum_{n=0}^{\infty} a_{n} P_{n}^{(\alpha, \beta)}(x)$
where
$a_{n}=\frac{1}{g_{n}} \int_{-1}^{1}(1-t)^{\alpha}(1+t)^{\beta} f(t) P_{n}^{(\alpha, \beta)}(t) d t$
and
$g_{n}=\frac{2^{\alpha+\beta+1}}{2 n+\alpha+\beta+1} \cdot \frac{\Gamma(n+\alpha+1)}{\Gamma(n+1)} \cdot \frac{\Gamma(n+\beta+1)}{\Gamma(n+\alpha+\beta+1)}$
The $\left(N, p_{n}, q_{n}\right)_{\text {Transform BORWEIN [1] of }} s_{n}=\sum_{k=0}^{n} a_{k \text { is defined by }}$
$T_{n}=\sum_{k=0}^{n} \frac{p_{n-k} q_{k} s_{k}}{\theta_{n}}$
where
$\mathbb{\Xi}_{n}=\sum_{k=0}^{n} p_{n-k} q_{k}=(p * q)_{n}\left(p_{-1}=q_{-1}=\theta_{-1}=0\right)$
and
$\mathbb{\Xi}_{n} \neq 0$ पाँ $n \geqslant 0$.
We shall also have the occasion
$D_{n}=\sum_{k=0}^{n} \Delta p_{k} q_{n-k}$
The series $\sum_{n=0}^{\infty} a_{n}$ or the sequence $\left\{s_{n}\right\}$ is said to be summable $\left(N, p_{n}, q_{n}\right)_{\text {to }} s^{s}$, if $T_{n} \rightarrow s_{\text {and }} n \rightarrow \infty$ and is said to bo absolutely summable $\left(N, p_{n}, q_{n}\right)_{\text {if }}\left\{T_{n}\right\} \in B V$ and when this happens, we shall symbolically by $\left\{s_{n}\right\} \in\left|N, p_{n}, q_{n}\right|$

The necessary and sufficient conditions for the regularity of $\left|N, p_{n}, q_{n}\right|$ mean are DAS [2]

$(|p| *|q|)_{n}=o\left(\left|(p * q)_{n}\right|\right)$, 蓲 $n \rightarrow \infty$
Condition ${ }^{(1.1 .3)}$ is equivalent to the Condition ${ }^{(1.1 .4)}$ that for all (fixed) $K_{\text {for which }}$ $q_{k} \neq 0$.
$p_{n-k}=O\left((p * q)_{n}\right) \square n \rightarrow \infty$
but (1.1.5) need not hold for these values of ${ }^{(\text {(if any) for which }} q_{k}=0$.
[1.2] INTRODUCTION :-
In 1946 Hardy and Rogosinki [5] proved the following theorem of convergence
criterion for the Fourier. series of $f(t)$ at a given point $t=x$
Theorem A : ${ }_{\text {If }}$
$\mathbb{Z}(t)=O\{1 / \log |1 / t|\} \quad(t \rightarrow 0)$
and
$A_{n}(x)=O\left(n^{-\delta}\right)$
for some $0<\delta<1$, then the Fourier series of $f(t)$ converges to ${ }^{s}$ at $t=x$. Later on. the same authors improved the first condition of the above theorem to $\mathbb{G}(t)=O\{1 / \log |1 / t|\} \quad(t \rightarrow 0)$

In 1943, lyengar [6] showed that the condition $(1.2 .1)$ alone suffices to ensure the Harmonic summability ${ }^{(H)}$ of the Fourier series of $f(t)$
$f(t) \square t=x \rightarrow s$
Later on Siddiqui［12］generalized lyengar＇s theorem in the following manner．
Theorem B：If $(1.2 .3)$ is satisfied，then the Fourier series of $f(t)$ is summable ${ }^{(H)}$ at

$$
t=x
$$

Recently，Pati［8］has developed lyengar＇s result by proving the following theorem．
Theorem C：Let $\left(N, p_{n}\right)$ ，be a regular Nörlund method．
Let $\left\{p_{n}\right\}_{\text {be a non－negative and monotonic non increasing sequence of real numbers such }}$ that $P_{n} \rightarrow \infty$ ．

If
$\log n=O\left(P_{n}\right)$ ，艺因 $n \rightarrow \infty$
and
$\Xi(t)=O\left\{\frac{t}{P_{r}}\right\}, \square \square t \rightarrow+0$
where ${ }^{\square}=\left[t^{-1}\right]$ ，then the Fourier series of $f(t)$ is summable $\left(N, p_{n}\right)$ to sat $t=x$ ． Later on Hesiang［4］generalized Pati＇s theorem to a further step．He proved the following theorem：

Theorem D：let $\left(N, p_{n}\right)$ be a regular Nörlund method defined by a non－negative and monotonic non－increasing sequence of real numbers such that $P_{n} \rightarrow \infty$ as $n \longrightarrow \infty$ ，and let $\Xi^{\boxtimes(t)}$ be a positive monotonic increasing function $\boxtimes(n+1) \geqslant \psi(n)$ ． If
$\boxtimes(n) \log n=o\left(P_{n}\right), \square n \longrightarrow \infty$
and
$\square(t)=O\left\{\frac{\psi\{[]]\}}{P_{r}}\right\}$ ，四因 $t \rightarrow 0$
then the Fourier series of $f(t)$ is summable $\left(N, p_{n}\right)_{\text {to }} s$ at $t=x$
The case ${ }^{\mathbb{Z}}$ being a constant is Pati＇s theorem

Recently．Sharma［11］has established a theorem generalising the Pati＇s result on the Nörlund summability of Fourier Jacobi series．This result is analogous of the result of Hsiang $[4]_{\text {for trigonometric Fourier series．}}$ ．

The object of this paper is to generalise the above theorem for Fourier Jacobi series．This theorem is a generalisation of the theorem of Prasad and Saxena［9］．However，our theorem is as follows：－

Theorem；If
$F_{1}(t)=\int_{0}^{t}|F(\phi)| d \phi=O\left(\frac{\psi(\tau) t^{2 \kappa+2}}{\theta\left(R_{r}\right)}\right)$ as $t \rightarrow \infty$
where
$F(\phi)=[f(\cos \phi)-A](\sin \phi / 2)^{2 \alpha+1} \times(\cos \phi / 2)^{2 \beta+1}$
and $\mathbb{Z}^{\mathbb{Z}}(t)$ and $\mathbb{}^{\mathbb{Z}}(t)$ are non－negative monotonic increasing functions of $t_{\text {such that }}$
可 $(n) \log \log n=O\left(\theta\left(R_{n}\right)\right)$ 區四 $n \rightarrow \infty$
$n^{(2 \alpha+1) / 2}=O\left(R_{n}\right)$ 达 $n \rightarrow \infty$
and
$\sum^{n} \frac{R_{k}}{k^{2 \alpha+1 / 2} \log k}=O\left(R_{n} / n^{(2 \alpha+2) / 2}\right)$
as ${ }^{n \rightarrow \infty}$
then the series ${ }^{(1.1 .2)}$ is summable ${ }^{\left(N, p_{n}, q_{n}\right)}$ at the point ${ }^{x=+1}$ to sum A，provided that the condition $-1 / 2 \leqslant \alpha<1 / 2,0>-1 / 2$ and the antipole condition
$\int_{-1}^{b}(1+x)^{\frac{2 \beta-3}{4}}|f(x)| d x<\infty$
are satisfied，where ${ }^{b}$ is fixed and $\left(N, p_{n}, q_{n}\right)$ is regular Nörlund method defined by the real non－negative and nan－increasing sequence ${ }^{\left[D_{n}\right]}$ such that
$D_{n} \rightarrow \infty$ 因固 $n \rightarrow \infty$
［1．3］Lemmas：We require the following lemmas of Gupta［3］for the proof of our theorem Lemma 1：let
$N_{n}(\phi)=2^{2+\beta} / R_{n} \times \sum_{k=0}^{n} \quad D_{k} \lambda_{n-k} P_{n-k}^{(\alpha+1, \beta)} \times(\cos \phi)$
where
$\mathbb{\Xi}_{n}=\frac{2^{-\alpha-\beta-1} \Gamma(n+\alpha+\beta+2)}{\Gamma(\alpha+1) \Gamma(n+\beta+1)}=\frac{2^{-\alpha-\beta-1}}{\Gamma(\alpha+1)} \cdot n^{\alpha+1}$
then (i) for $0 \leqslant \phi \leqslant 1 / n$
$\left|N_{n}(\phi)\right|=O\left(n^{2 \alpha+2}\right)$
(ii) for $\frac{1}{n} \leqslant \phi \leqslant \pi-\frac{1}{n}, \alpha \geqslant-\frac{1}{2}$
$\left|N_{n}(\phi)\right|=\frac{1}{R_{n}} O\left(\frac{n^{(2 \alpha+1) / 2} R_{(1 / \phi)}}{\sin (\phi / 2)^{(2 \alpha+3) / 2} \times(\cos \phi / 2)^{(2 \beta+1) / 2}}\right)+$
$+O\left(\frac{n^{\frac{2 \alpha-1}{2}}}{\left.\left(\sin \sin \phi / 2^{(2 \alpha+5) / 2} \times \text { 因国 } \cos \phi / 2\right)^{(2 \beta+3) / 2}\right)}\right)$
(iii) For
($-\frac{1}{n} \leqslant \phi \leqslant \pi, \alpha \geqslant-\frac{1}{2}, \beta>-\frac{1}{2}$
$\left|N_{n}(\phi)\right|=O\left(n^{(\alpha+\beta+1)}\right)$
Lemma 2: The antipole condition
$\int_{-1}^{b}(1+x)^{(2 \beta-3) / 4}|f(x)| d x<\infty$
means $\int_{a=\cos ^{-1}}^{\pi} \cos \cos t / 2^{(2 \beta-1) / 2}|f(\cos \cos t)-A| d t<\infty$
which is further

$$
\begin{equation*}
\int_{0}^{1 / n} \quad t^{(2 \beta-1) / 2}|f(-\cos \cos t)-A| d t=0(1), \text { as } n \rightarrow \infty \tag{1.3.5}
\end{equation*}
$$

[1.4] Proof of the theorem: Following the lines of Oberechkoff ${ }^{[7]}$ the ${ }^{n^{[8]}}$ partial sum of the series (1.1.2) at the point ${ }^{x=+1}$ is given by
$s_{n}(1)=2^{\alpha+\beta} \int(\sin \sin \boxed{0} / 2)^{2 \alpha}\left(\cos \cos \frac{\square}{2}\right)^{2 \beta} \times$

where ${ }^{S_{n}(1, \cos \phi)}$ denotes the ${ }^{n}$ th patial Sum of the series
$\sum_{m} P_{m}^{(\alpha, \beta)}(1) P_{m}^{(\alpha \beta \beta)}(\cos \phi) / g_{m}$
where
$g_{m}=\frac{2^{\alpha+\beta+1} \Gamma(m+\alpha+1) \Gamma(\alpha+\beta+1)}{(2 m+\alpha+\beta+1) \Gamma(m+1) \Gamma(m+\alpha+\beta+1)}$
RAO [10] has shown that
$(1, \cos \cos$ 目) $)=\lambda_{n} P_{n}^{(\alpha+1, \beta)}\left(\cos \cos \left[\begin{array}{rl}0\end{array}\right)\right.$
where
$\mathbb{\Xi}_{n}=\frac{2^{-\alpha-\beta-1} \Gamma(n+\alpha+\beta+2)}{\Gamma(\alpha+1) \Gamma(n+\beta+1)}$
$=\frac{2^{-\alpha-\beta-1}}{\Gamma(\alpha+1)} n^{\alpha+1}$
therefore
$S_{n}(1)-A=2^{\alpha+\beta+1} \lambda_{n} \int_{0}^{\pi}(\sin \phi / 2)^{2 \alpha+1} \times(\cos \phi / 2)^{2 \beta+1} \times$
$\times[f($ ㄷC제 $\cos \phi)-A] P_{n}^{\alpha+1, \beta)}(\cos \phi) d \phi$
$=2^{\alpha+\beta+1} \lambda_{n} \int_{0}^{\pi} \quad F(\phi) P_{n}^{(\alpha+1, \beta)}(\cos \cos \phi) d \phi$
The Nörlund means of series ${ }^{(1.1 .2)}$ at The point ${ }^{x=+1}$ is
$t_{n}=\frac{1}{R_{n}} \sum_{k=0}^{n} \quad D_{k} S_{n-k}(1)$
$t_{n-A}=\frac{1}{R_{n}} \sum_{k=0}^{n} \quad D_{k}\left(S_{n-k}(1)-A\right)$
$\left.\left.=\frac{1}{R_{n}} \sum_{k=0}^{n} \quad D_{k} 2^{\alpha+\beta+1} \lambda_{n-k} \times \int_{0}^{\pi} F(\phi) P_{n-k}^{(\alpha+1, \beta)} \phi\right)\right) d \phi$
$=\int_{0}^{\pi} F(\phi) N_{n}(\phi) d \phi$
To prove our theorem we have to show that
$I=\int_{0}^{\pi} F(\phi) N_{n}(\phi) d \phi$
$=O$ (1) 比 $n \rightarrow \infty$.
We write
$I=\left(\int_{0}^{\frac{1}{n}}+\int_{\frac{1}{n}}^{\delta}+\int_{\delta}^{\pi-\frac{1}{n}}+\int_{\pi-\frac{1}{n}}^{\pi}\right)^{\pi} F(\phi) N_{n}(\phi) d \phi$
(where ${ }^{\text {is }}$ an adjusted constant)
$I=I_{1}+I_{2}+I_{4}+I_{4}$ (say)
Applying ${ }^{(1.3 .1)}$ we have
$\left|I_{1}\right|=O\left(n^{2 \alpha+2}\left(O\left(\psi(n) / \theta\left(R_{n}\right)\right) \cdot n^{-2 \alpha-2}\right)\right.$
$=\frac{o(\psi(n))}{\left(\theta\left(R_{n}\right)\right)}$
$=O(1)$ as ${ }^{n \rightarrow \infty}$ by the hypopthesis (1.2.9), (1.4.5).
Again by the application of ${ }^{(1.3 .2)}$
$\left|I_{2}\right|=O\left(\frac{\int_{1 / n}^{\delta}|F(\phi)| n^{(2 \alpha+1) / 2}}{R_{n}}\right) R_{\left[\frac{1}{\phi}\right]}\left(\sin \sin \frac{\mathbb{T}}{2}\right)^{\frac{-2 \alpha-3}{2}} d \phi+$

$$
\begin{equation*}
+O\left(\int_{1 / n}^{\delta}|F(\phi)| n^{(2 \alpha-1) / 2}(\sin \phi / 2)^{(-2 \alpha-5) / 2} d \phi\right) \tag{1.4.6}
\end{equation*}
$$

$=I_{2.1}+I_{2.2}($ (잦T) $)$
Now
$\left|I_{2}\right|=\frac{n^{(2 \alpha+1) / 2}}{R_{n}} \int_{1 / n}^{\delta}|F(\phi)| R_{\left[\frac{1}{\phi}\right]} / \phi^{(2 \alpha+3) / 2} d \phi$
$=O\left(\frac{n^{\frac{2 \alpha+1}{2}}}{R_{n}}\right)^{\frac{1}{n}}\left[0 \frac{\left(凹\left(\left[\frac{1}{\phi}\right]\right) \phi^{2 \alpha+2}\right.}{\theta\left(P_{\left[\frac{1}{\phi}\right]}\right)} \frac{R_{\left[\frac{1}{\phi}\right]}^{\phi(2 \alpha+3)}}{2}\right]^{\delta}+$
$+O\left(\frac{n^{\frac{2 \alpha+1}{2}}}{R_{n}}\right)^{1 / n} \int_{\frac{1}{n}}^{\delta} 0 \frac{(\psi(1 / \phi)) \phi^{2 \alpha+2}}{\theta\left(P_{\left[\frac{1}{\phi}\right]}\right]^{1 / n}} \frac{d}{d \phi} \frac{R^{R}\left[\frac{1}{\phi}\right]}{\frac{\phi(2 \alpha+3)}{2}} d \phi$
$=I_{2,1.1}+I_{2,2.2}$ (say)
But,
$I_{2.1 .1}=O\left(n^{(2 \alpha+1) / 2}\left[O\left(\psi([1 / \phi]) \frac{\phi^{2 \alpha+z}}{\left.\theta\left(R_{\left[\left[\left[\frac{1}{\phi}\right]\right.\right.}\right]\right)_{\frac{1}{n}}^{s}} R\left[\frac{1}{\phi}\right]\right]\right.\right.$

$$
\begin{align*}
& =O\left(\frac{n^{\frac{2 a+1}{2}}}{R_{n}}\right)+\left(\frac{\psi(n)}{\theta\left(R_{n}\right)}\right) \\
& =O(1) \text { as } n \rightarrow \infty \tag{1.4.8}
\end{align*}
$$

Now,
$I_{2,1.2}=O\left(\frac{n^{\frac{2 \alpha+1}{2}}}{R_{n}}\right) \int_{\frac{1}{n}}^{\delta} O\left(\psi\left(\left[\frac{1}{\phi}\right]\right) \frac{\phi^{2 \alpha+2}}{\theta\left(P_{\left[\frac{1}{\phi}\right]}\right) \frac{d}{d \phi}}\right)\left(\frac{\left.R_{\left[\frac{1}{\phi}\right]}^{\phi^{\frac{2 \alpha+3}{2}}}\right) d \phi}{}\right)$
$=O\left(\frac{n^{\frac{2 \alpha+1}{2}}}{R_{n}}\right) \int_{\frac{1}{\delta}}^{n} \frac{\psi[(x)]}{\theta(R(x)) x^{-2 \alpha-2} \frac{d}{d x}}\left(R_{x} x\right)^{\frac{2 \alpha+3}{2}} d x$
$=O\left(\frac{n^{\frac{2 \alpha+1}{2}}}{R_{n}}\right)+O\left(\frac{n^{\frac{2 \alpha+1}{2}}}{R_{n}}\right) \sum_{k=a}^{n} \frac{\psi(K)}{\theta\left(R_{k}\right) k^{-2 \alpha-2}} \Delta\left(R_{k} K^{\frac{2 \alpha+3}{2}}\right)$
where $a=\left[\delta^{-1}\right]+1$ and ${ }^{\boxtimes R_{k}}=R_{k+1}-R_{k}$
$=O\left(\frac{n^{(2 \alpha+1) / 2}}{R_{n}}\right)+O\left(\frac{n^{(2 \alpha+1)}}{R_{n}}\right) \sum_{k=\alpha}^{n} \frac{R_{k}}{\log \log k} \times \frac{1}{k^{\frac{2 \alpha+1}{2}}}$
$=O\left(\frac{n\left(\frac{2 a+1}{2}\right)}{R_{n}}\right)+O\left(\frac{n^{\left(\frac{2 \alpha+1}{z}\right)}}{R_{n}}\right) O\left(\frac{R_{n}}{n^{\frac{2 \alpha+1}{z}}}\right)$
by (1.2.11)
$=O(1)$ as $n \rightarrow \infty$
Now, we consider $I_{2.2}$ where
$I_{2.2}=O\left[\int_{1 / n}^{\delta}|F(\phi)| n^{(2 \alpha-1) / 2}(\sin \theta / 2)^{(-2 \alpha-5) / 2} d \phi\right]$
$=O\left(n^{2 \alpha-1) / 2}\right)\left[\frac{\psi([1 / \theta]) \theta^{\frac{2 \alpha-1}{2}}}{\theta\left(R_{[1 / \theta]}\right)}\right]_{1 / n}^{\sigma}+$
$+O\left(n^{(2 \alpha-1) / 2}\right) \times \int_{1 / n}^{\delta} \frac{\psi((1 / \theta])]^{\frac{2 \alpha-3}{2}}}{\theta\left(R_{\left[\frac{1}{\theta}\right.}\right)} d \phi$
$=O\left(n^{\frac{2 \alpha-1}{2}}\right)+O\left(\frac{\psi(n)}{\theta\left(R_{n}\right)}\right)+O\left(n^{\frac{2 \alpha-1}{2}}\right) \int_{1 / n}^{\delta} \frac{\psi([x]) x^{\frac{-2 \alpha-1}{2}}}{\theta(R(x))} d x$.
Intigrating by Parts and applying (1.2.1)

Now, we consider I_{3}
where

$$
\begin{align*}
& \left|I_{3}\right|=O\left(\frac{\mid F(\phi)) n^{\frac{2 \alpha+1}{2}}}{R_{n}} \cdot \frac{R_{[1 / \phi]} d \phi}{(\sin \phi / 2)^{\left(2 \alpha+\frac{\phi}{2}\right.}}(\cos \phi / 2)^{\frac{2 \beta+1}{2}}\right) \\
& +O\left(n^{\frac{2 \alpha-1}{2}}\right) \int_{\delta}^{\pi-\frac{1}{n}} \frac{|F(\phi)| d \phi}{(\sin \phi / 2)^{\frac{2 \alpha+5}{2}}} \times\left(\cos _{\phi / 2}\right)^{\left.\frac{2 \beta+3}{2}\right)} \\
& \left.\left.\left.=o\left(\frac{n^{\frac{2 \alpha-1}{2}}}{R_{n}}\right) \int_{\delta}^{\pi-\frac{1}{n}} \right\rvert\, f(\cos \cos \text { 目 })-A \right\rvert\,\left(\frac{\cos \cos \text { 团 }}{2}\right)^{\frac{2 \beta-1}{2}}\right)\left(\frac{\text { (EE[因 } \cos \text { 园 }}{2}\right) d \phi+ \\
& +O\left(n^{\frac{2 \alpha-1}{2}} \int_{\delta}^{\pi-\frac{1}{n}} \left\lvert\, f(\cos \cos (0)-A \mid)\left(\frac{\cos \cos \mathbb{B}}{2}\right)\right.\right)^{\frac{2 \beta-1}{2}} d \phi \\
& =O\left(\frac{n^{\frac{2 \alpha+1}{2}}}{R_{n}}\right)+O\left(n^{\frac{2 \alpha-1}{2}}\right) \\
& =O(1) \text { 迥 } n \rightarrow \infty, \alpha<\frac{1}{2} \tag{1.4.11}
\end{align*}
$$

Lastly．
$\left|I_{4}\right|=\int_{\pi-1 / n}^{\pi} \quad\left|F(\phi) N_{n}(\phi) d \phi\right|$
$=O\left(n^{\alpha+\beta+1}\right) \int_{\pi-\frac{1}{n}}^{\pi}|f(\cos \cos \pi)-A| \times$
$\times(\cos \phi / 2)^{\left(\frac{2 \beta+1}{2}\right)}(\sin \phi / 2)^{(2 \alpha+1)} d \phi$
$=O\left(n^{(2 \alpha-1 / 2}\right) \int_{0}^{1 / n}|f(-\cos \phi)-A|^{(\alpha \beta-1) / 2} d \phi$
$=O(1)_{\text {by the application of }}(1.3 .5)$
Combining $(1 \cdot 4.4)_{\text {to }}(1 \cdot 4 \cdot 12)$
$I=O(1) \square \square \rightarrow \infty$
This complete the proof of the theorem

REFERENCES

BORWEIN，D ：On praduct of sequencos：J Londan．
Math．Soc．33（1958）：${ }^{352-357}$ ．

DAS. G

GUPTA, D.P.

HSIANG, F.C.

HARDY, G.H. AND : Fourier series Cambridge (1946).
ROGOSINSKI, W. IYENGAR, K.S.K.

OBRECHKOFF, N.

PATI, T.

PRASAD, R. AND
SAXENA, A.

RAO, H.
: On some mathods of summability 11
Quart J. math. Oxford (2)/9 (1988):417-
431.
: D.Sc. Thesis, Allahabad University (1970).
: On Nörlund summability of Fourier series. Bull. Calcutta Math. Soc. 61(1) (1969) : 1-5.
: A tauberial theorem and its application to Convergence of Fourier series, Proc. Indian Acad. Sci (A), (1943), 81-87.
: Formulas asmatotiques Pour les Palynomes de. Jacobi et. seriesSeriesSuivant les Sofia, Phys. Math: 32 (1936), 39-135.
: On the harmonic Summability of Fowrier Series Indian Jour. Math. 3(1961) 85-90.
: On the Nörlund sumability of Fouries Jacobi series; Indian J. Pure. Appl. Math. 10(10); (1979) 1303-1311.
: Uber die lebes gues chem konstanten der Reihenenwick tungen nach JacobiSchem Polynomen, J. Reine angen, Math; (6) (1929); 237-254.

SHARMA, M.M. : On the Nörlund summability of FouriesJacobi series; Vijnana Parishad Anusandhan patrika, 2(19) (1976), 143152.

SIDDIQUI, J.A.
On the harmonic summability of Fourier series, Proc. Indian. Acad. Sci
(A), 28, (1948); 527-531.

