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[1.1] DEFINITIONS AND NOTATIONS:

PF(x),e > —1,8 > 1

The Jacobi polynomials " 1 are defined by

29 (1= 2xt + )2 [(1—t+ (L — 2t + )2 " xx [(1+ £ + (1 — 2xt + £2) V2] F
- Z P RN (x)t"
n=0

Let f(x] be a function defined on the interval —1<x<1 such that the integral

f (1— )% (1 + 0 f(x)dx (1.1.1)

exists in the sense of Lebesgue. The Fourier-Jacobi series corresponding to the function

f(x) is given by

f(x]wz a, P'" (x) (1.1.2)
n=0

where

_1r e g @p)

a, = (1—0*(1+ DEFOP“P (t)dt
n<—1

and

pa+p+l Fm+a+1) Tm+p+1)
On

T 2n+a+f+1 T(n+l) T(+a+pB+1)

- n
The (N, P qn] Transform BORWEIN [1] of Sn = Zk:ﬂ'ak is defined by

n
_ 5
T, ZZ Pn ;% k
k=0 "
where

T

B, = Z PokGr= P*q)y, (p_1=q_, =0_,=0)

k=0

and
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8, #0000 n>0.

We shall also have the occasion

n

Dn :Z ﬂpﬁ:Qn—k

k=0

(=]
The series ZFU‘ G or the sequence {Sn} is said to be summable (N' P QH) to S, if

I, —=s,4n— {T.}eBV 4

“ and is said to bo absolutely summable (N, Prns qﬂj if
{S?‘l} E |N' pn"?n|

when this happens, we shall symbolically by

The necessary and sufficient conditions for the regularity of |N, P G| mean are DAS [2]

GuerPn—i = GHP b q}:l!}.l BEENn — o0 mEm) {113}
(Ipl *1g)n = o(l{p * @), 1), B@N = o0 (1.1.4)

Condition (1.1.3) is equivalent to the Condition (1.14) that for all (fixed) K for which

qkiﬂ

Pnk =0((p*q),) COn— oo (1.1.5)

but (1.1.5) need not hold for these values of k (if any) for which & = 0.

[1.2] INTRODUCTION : -

In 1946 Hardy and Rogosinki [5] proved the following theorem of convergence

criterion for the Fourier. series offﬁ:jJ at a given point t=x

Theorem A If

B(t) = 0{1/log |1/t]} (t—0) (1.2.1)

and

A,(x) =0(n7%) (1.2.2)

for some 0<d< 1, then the Fourier series off(tj converges to 5 at t= X

Later on. the same authors improved the first condition of the above theorem to

B(t) = 0{1/log |1/t]} (t—0) (1.2.3)
o (1.2.D) .
In 1943, lyengar [ 6] showed that the condition alone suffices to ensure the

Harmonic summability (H) of the Fourier series off(tj
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f(t)Zt=x — s
Later on Siddiqui [12] generalized lyengar's theorem in the following manner.

£ (1.2.3)

Theorem B: is satisfied, then the Fourier series offﬁ:jJ is summable (HJ at

t=x
Recently, Pati [8] has developed lyengar's result by proving the following theorem.

Theorem C: Let (N' p“), be a regular Norlund method.

Let {p”} be a non-negative and monotonic non increasing sequence of real numbers such
that Fn = @,
If
logn=0(P,),B8n— oo (1.24)
and
: r)] ——
a(t)=0 Pt +0 (1.2.5)
T

==[t"] @ (N,2) o sar T = X

where , then the Fourier series of is summable 1 Pnl to sat .

Later on Hesiang [4] generalized Pati’s theorem to a further step. He proved the following

theorem:

Theorem D: let (N' pﬂ) be a regular Norlund method defined by a non-negative and

— o0 — oD
P as

monotonic non-increasing sequence of real numbers such that * 1 ,and

let =(t) be a positive monotonic increasing function z(n+1)> w(n]

If

B(n)logn=o0(P,),__ n—oo (1.2.6)
and
B(t)=0 {w{i] }t}, EEt—0 (12.7)

then the Fourier series off(t] is summable (N' p“] to § at t=x

The case = being a constant is Pati’s theorem
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Recently. Sharma [11] has established a theorem generalising the Pati’s result on the

Norlund summability of Fourier Jacobi series. This result is analogous of the result of Hsiang

[4] for trigonometric Fourier series.

The object of this paper is to generalise the above theorem for Fourier Jacobi series. This
theorem is a generalisation of the theorem of Prasad and Saxena [9]. However, our theorem
is as follows:-

Theorem; If

Ylr)eets

a(R) )as t— oo {1.2.8)

F(D) = f F(¢)ldo = o(
o

where
F(¢) = [f(cos ¢) — Al(sin ¢/2)° X (cos ¢/2)?F**

and 2(1) and 2(t) are non-negative monotonic increasing functions of € such that
B(n) loglogn = 0(8(R,))EEn = o (1.2.9)
nlzfﬁ‘+1:',."f — G{Rn} BEn — oo {l.z.lﬂ}

and

L[

RJ{ = A -
Z k:‘r-l'l"'l:.fﬂg k = G(R:z.‘ﬁll‘_ml-_}"_} {_1.2.11]

n—ao
as

{N, Pr. r-?:'z} =+1

then the series (1.1.2) is summable at the point * to sum A, provided that

—12<a<1/2 8> —1/2

the condition and the antipole condition

b 28-3
j (1+x) ¢ [flx)|dx < oo (1.2.12)
-1

N-' pi'!-' QF!}

are satisfied, where b is fixed and ( is regular No6rlund method defined by the real

1
non-negative and nan -increasing sequence (D] such that
D,—wi@n— w
[1.3] Lemmas: We require the following lemmas of Gupta [3] for the proof of our theorem

Lemma 1: let

n

N;.;{Gb} = 2:+'EIEFR;.; X Z Dkﬂ?!_kaif:Lg} X {:CI‘JS qf}}
k=0
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where

27« B lfn+a+p+2) 27F L

B, = = .
" e+ Dfm+p+1) Ma+1)
then (i) for O<é<1/n
IN, ()] = 0(n?**2) (1-3-1)
1 1 1
(ii)fori'!il:i}!ﬂﬁ %3
1 ﬂ(:rf+l]l.-"2 erftﬂ
‘Iiir == _G = T Sl oy PR +
|1 :z{d}}l R,! (SITI {¢f2}l"ﬁ+3}"_ % (CGS d}’fz}'\—lg-i'l}f—
2a—1
n 2 (132)
(sinsin ¢ 22e+5)/2 wFEF cos /2 ) 2E+3)/T) o
(iii) For
= 1 1 - 1
A-_s¢smaz—5.p >
N, ()] = O(nlatF+D) (13-3)
Lemma 2: The antipole condition
b
j (14 x) B34 f(x)|dx < o0
-1
means J'RH:EM_-_ cos cos t/202B-1U/2 | fcoscos t) — A|dt < oo {(1.34)

which is further

1/n
j t(2B-1/2|f(—coscost ) — Aldt = 0(1),asn = o (1.3.5)
0

[7] the n

[1.4] Proof of the theorem: Following the lines of Oberechkoff partial sum of the

x=+1

series (1.1.2) at the point is given by

, 2\
5 (1) = 2“‘*3"‘ (sin sin@ ,’2}-“(505 Cos E) ®

% flcos cosB)(1,cos cosB) BB sin ¢pdg {1.4.1)

5?!

where (Lcos ) denotes the "'th patial Sum of the series

> B @EEF (cos 9)/g,

m

where
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B 205l mta+ DM(a+ f+ 1)
Gm = (2m+a+f+1Urm+1Im+a+F+1)

RAO [10] has shown that
(l,coscosB) =4, Efﬁl’g}(cos cosE )

where

272 B-lfn+a+ 5+ 2)

T et DI+ f+ 1D

g—a—f-1

— i
T+

therefore

S.(1)—-A= Z‘HE“}L,f (sin ¢/2)2* L x (cos ¢p/2)2F+1 x
o
x [f(EEBcos ¢) — AIP" ) (cosp)de (14.2)

= patR+1y j Flg) P;!':“J“Lm{cas cos p)deg
o

(1.1.2) =+1,

The Norlund means of series at The point*

n
1
Ly = _Z Dks:'z—k(l}
R k=0
n

1 Z :
fp—a= Dk('s'n—k{l} _A}
Rn k=0

n

1 . T (o180
Ly akz«+ﬂ+l,1,,_ka F(@)P ) 4) Yag
k=0

[ FoW.@a0 (143)
o
To prove our theorem we have to show that
1= [ F@)N. (g
]

=0(1) EEn — oo.

We write

L 5 L i

="+ [+ j_ +j£ F($)N,(¢)dg

B

(where ~ is an adjusted constant)
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I=h+L+ 1+ 1, (say) (1.4.4)
Applying (131 e have

|I| = 0(n®**2 (0(w(n)/8(R,))-n~2%2)
_0o(y(n)

- (8(R,))

=0(1) as ' 7 “ by the hypopthesis (1.2.9), (1.4.5).

Again by the application of (13.2)

O (LT MY o
|| = R, H sin sin — b+

#

&

+0( | F(¢)|n2a~D/2 (sin ¢/2)(-22-5)/2qg)

1/n
= ff.l + I:I: {EEE} {1.4.5}
Now
pl2a+1)/2 & N ~
L= F@IR/6Ge2 ag
n 1/n &

1
n-ff:l)”mm([q—t]) -

R?!

Tt 1/n . .
- :“) f , W@+ g “4]

+0 - — d
R, L (P11 de ¢(2a+3) ¢
' ¥ 2z
=1Ip11 + 22z (say) (14.7)
But,

I11 = 0(n2e+D/2 [G@([l@])%ﬂ[ﬂ]

=),

za+: bom)
n oz in
=0 ( Rn )+ E(Rn})
=0(1) s

Now,
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a2 |\
)
2atll
3 2at3
_0 nR- L Pl(x)] R T
7 3 E{R(x}:}x'm':ﬁ

1
Ze+l 2o+l n
_0 n 2 40 n Z Z W(K) ﬂ(R h@)
- R, R, |& 6(R, k22 KT

where @= [671]+1 and ERp=Ryps+1 — Ry

n

o (n(:n+1}£:)+ 0 (n(:nﬂ}jz R, 1
— —_— X —
R, R, =t log log k k%
'_'.|:r+'_~I r&*l
= o(”' - ’)+o(”' - ’)G( f;i-.)
Rn Rn n o

=0{1) asn— o (1.4.9)

by (1.2.11)

Now, we consider T2 where

&
I, =0 U |F(@)|n'2*= /2 (sin 3,»'2}'1—:«—5}&@95}
1/n

]

T

— G(Tlﬂrr—l},-"ﬂ}

B(Rr1/81)
1/n
S y(a/eDeE T
) 5 2
+G{T1":R_l”:} W :
1/n & {R[é]}

=0 (:rl::r:'_l)+ G(;::{T%)J’ 0 (nzﬁi'_l)’[:” %dm

Intigrating by Parts and applying (1.2.1)
—0(1) 00n—-ow I0DI0000<1/2 (1.4-10)

Now, we consider 'ra

where
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2+l
J | F(¢))n 2 Riyje1de 2841
|I3] = O( R . ¢ —3 (cos ¢/2)"7)
" (sin ¢/2)"**%2
1
Za—1y [T n F d 2F+3
+0 (11 z )L —l (@)l i}r+5 * {casw:]LT:'

(sinp/2) =

Za—1 o1 281
n z ' on cos cosHE 2 FEEcos E
:G( )j If(cascasE]—Al(—) }(—)dqf}+
B 5 2 2

1
2a-1 [T n cos cos @ 281
+0|n z |flcoscosB) — A| (—)} 2 de
&

2
2o+l
n z Za—1
=0 ( 5 )+ 0 (n_: ) BEEE (1.3.4)
1
=0(1)EEn = ow,a < 3 (14.11)
Lastly.

=] IF@N.@ael

4

= g(netE*l |flcoscosB) —A| %
1

T—=
n

2R+
x (cos $/2) 72 (sin ¢/2)2** D dg

1/n
—0(ne=2) [ If(—cos ) - AP g
0

=0(1) by the application of (1.3.5) (1.4.12)

(1-44), (1-4-12)

Combining
[=0(1)00n— o
This complete the proof of the theorem
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